QIUXP-预训练语言模型:BertMarker:MarkBERT: Marking Word Boundaries Improves Chinese BERT

提出了一种名为MarkBERT的新模型,该模型通过引入marker标记改进了基于词的中文BERT预训练方式。预训练任务包括masked language modeling及replaced word detection,后者通过替换词语并利用marker预测是否被替换,增强模型对词边界的认识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MarkBERT: Marking Word Boundaries Improves Chinese BERT

作者觉得现有的基于words作为一个unit的方式,对于OOV和中文并不十分适用。
提出的markbert,是在以词组为切割的基础上,还加入了marker标记。

预训练任务包括两种:

The first task is masked language modeling and we
also mask markers such that word boundary knowledge can
be learned since the pre-trained model needs to recognize
the word boundaries within the context. The second task is
replaced word detection. We replace a word with artificially
generated words and ask the markers behind the word to predict whether the word is replace

在replace word detection中,混淆词的构造可以是多种多样的。我们采取了两种简单的策略:(1)我们使用同义词作为混淆;(2)我们使用中文中语音(拼音)相似的词。为了获得同义词,我们使用Zhang和Yang(2018)提供的外部词汇嵌入。我们计算单词之间的余弦相似度,并使用最相似的单词作为同义词混淆。为了获得基于语音的混淆,如图2所示,我们使用一个外部工具来获得单词的语音,并选择一个与之混淆的单词共享相同的语音。

在这里插入图片描述

模型结构

在这里插入图片描述

作者觉得,这种预训练方式更有助于中文NER中的marker标记下的识别。我不觉得特备好。而且论文的实验上,做的并不是很充分。

<think>好的,用户之前的问题是关于如何将点云数据整合到ROS的move_base导航栈中,现在他们提到了一个新的问题,涉及到配置中的某个参数:`{sensor_frame: base_link,sensor_topic:/camera/depth/points,data_type: PointCloud2, marking: true, clearing: false}`,特别是关于`sensor_frame`参数的作用。首先,我需要理解用户的问题。他们可能是在配置成本地图时遇到了问题,或者对`sensor_frame`的作用不太清楚。需要详细解释这个参数的意义以及它在整个系统中的影响。接下来,我需要回顾ROS中成本地图的配置。成本地图使用传感器数据来检测障碍物,而`sensor_frame`指定了传感器数据的参考坐标系。这个参数的正确设置关系到点云数据能否正确转换到成本地图的坐标系中,比如map或odom。如果这个坐标系设置错误,点云的位置可能不正确,导致障碍物标记错误,影响导航。然后,我需要考虑用户可能的错误场景。比如,如果用户将`sensor_frame`设置为错误的坐标系,如摄像头本身的坐标系而不是base_link,那么坐标转换可能无法正确进行,导致点云数据无法正确映射到机器人的实际位置,进而导致成本地图中的障碍物位置不准确。这时候,机器人可能会撞到障碍物,或者避开不存在的障碍物。此外,还需要解释相关的参数,比如`sensor_topic`是点云发布的话题,`data_type`指定数据类型为PointCloud2,`marking`和`clearing`控制是否标记或清除障碍物。这些参数共同作用,确保传感器数据被正确处理。 然后,用户可能想知道如何验证坐标系是否正确,或者如何调试坐标变换问题。这时候,可能需要指导他们使用tf工具,如`tf_echo`或`view_frames`来检查坐标系之间的关系,确保传感器数据能够正确转换到目标坐标系。最后,用户可能在实际应用中遇到问题,比如传感器数据未正确显示在成本地图中,这时候需要检查的参数包括sensor_frame是否正确、坐标系转换是否正确配置(比如静态tf发布是否正确)、以及参数文件是否正确加载。总结来说,回答需要详细解释sensor_frame的作用,常见问题,并提供验证方法,最后提出相关问题,引导用户进一步学习。</think>以下是关于ROS成本地图配置中`sensor_frame`参数的详细说明和验证方法: --- ### `sensor_frame`参数作用详解 在costmap配置中`sensor_frame`参数用于指定传感器的参考坐标系: ```yaml sensors: - {sensor_frame: base_link, ...} # 关键配置参数 ``` #### 核心功能: 1. **坐标转换基准**:定义传感器数据的原始坐标系 2. **数据对齐基准**:确保点云能正确转换到成本地图坐标系(map/odom) 3. **TF树完整性**:必须存在于ROS的TF坐标系树中 --- ### 典型错误场景示例 #### 错误现象: 点云在成本地图中显示位置偏移,障碍物位置与真实环境不符 #### 调试方法: ```bash # 查看坐标系转换关系 rosrun tf tf_echo base_link camera_depth_frame # 检查TF树结构 rosrun rqt_tf_tree rqt_tf_tree ``` --- ### 完整参数解析 ```yaml sensors: - sensor_frame: base_link # 传感器安装的父坐标系 sensor_topic: /camera/depth/points # 数据发布话题 data_type: PointCloud2 # 消息类型 marking: true # 是否标记障碍物 clearing: false # 是否用于清除区域 observation_persistence: 0.0 # 数据有效期(秒) ``` --- ### 验证代码示例 ```python #!/usr/bin/env python3 import rospy from sensor_msgs.msg import PointCloud2 def check_pointcloud(msg): try: # 获取当前坐标系转换关系 transform = tf_buffer.lookup_transform('map', msg.header.frame_id, rospy.Time(0)) rospy.loginfo("Valid transform: {}".format(transform)) except Exception as e: rospy.logerr("TF Error: {}".format(str(e))) if __name__ == '__main__': rospy.init_node('sensor_check') tf_buffer = tf2_ros.Buffer() tf_listener = tf2_ros.TransformListener(tf_buffer) rospy.Subscriber("/camera/depth/points", PointCloud2, check_pointcloud) rospy.spin() ``` --- ### 常见问题排查清单 1. 确认传感器数据头的frame_id是否与sensor_frame一致 2. 检查`base_link`到`map`的坐标转换是否连续 3. 验证静态TF广播节点的运行状态 4. 查看`/tf`和`/tf_static`话题是否有数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YJII

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值