动态规划算法讲义
一、动态规划概述
动态规划(Dynamic Programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
二、动态规划适用性
- 重叠子问题:问题可以分解为子问题,且子问题会重复出现。
- 最优子结构:问题的最优解包含子问题的最优解。
三、动态规划解题步骤
- 识别状态:定义dp数组,以及dp数组的下标含义。
- 确定状态转移方程:即子问题的解如何组合成大问题的解。
- 确定边界条件:即dp数组的初始状态。
- 确定遍历顺序:确定如何填满dp数组。
四、C++实现动态规划
以下是一个C++实现动态规划的示例,以背包问题为例。
1. 背包问题描述
假设有n
个物品和一个背包,物品i
的重量是w[i]
,价值是v[i]
,背包的容量是W
。要求如何放入物品,使得背包中物品的总价值最大。
2. 状态定义
定义dp[i][j]
表示考虑前i
个物品,背包容量为j
时能获得的最大价值。
3. 状态转移方程
- 不取当前物品
i
:dp[i][j] = dp[i - 1][j]
- 取当前物品
i
(如果不超过背包容量):dp[i][j] = dp[i - 1][j - w[i]] + v[i]
4. 边界条件
dp[0][j] = 0
,表示没有物品时,任何容量的背包价值都是0。
5. 遍历顺序
遍历所有物品,对于每个物品,遍历所有可能的背包容量。
6. C++代码实现
#include <iostream>
#include <vector>
using namespace std;
const int MAXN = 1005; // 物品数量上限
const int MAXW = 1005; // 背包容量上限
int main() {
int n, W;
cin >> n >> W;
vector<int> w(n), v(n);
for (int i = 0; i < n; ++i) {
cin >> w[i] >> v[i];
}
vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= W; ++j) {
if (w[i - 1] <= j) {
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i - 1]] + v[i - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
cout << dp[n][W] << endl;
return 0;
}
五、动态规划的优化
- 空间优化:如果状态转移只依赖于前一个状态,可以只保留前一个状态的dp数组。
- 时间优化:在某些情况下,可以减少不必要的循环,如只遍历背包容量的子集。
六、动态规划的应用
动态规划可以应用于多种问题,包括但不限于:
- 背包问题
- 最长公共子序列
- 最长递增子序列
- 最短编辑距离
- 图中的最短路径问题
七、总结
动态规划是一种强大的算法设计技巧,它通过避免重复计算来优化复杂问题的解决方案。掌握动态规划需要理解其基本思想,识别问题中的最优子结构和状态转移关系,并能够灵活地应用到不同的问题中。