【干货讲义】动态规划算法

本文详细介绍了动态规划的概念、适用性、解题步骤,包括C++示例,以及空间和时间优化方法。重点列举了动态规划在各种问题中的应用,强调其在优化复杂问题中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划算法讲义

一、动态规划概述

动态规划(Dynamic Programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

二、动态规划适用性

  1. 重叠子问题:问题可以分解为子问题,且子问题会重复出现。
  2. 最优子结构:问题的最优解包含子问题的最优解。

三、动态规划解题步骤

  1. 识别状态:定义dp数组,以及dp数组的下标含义。
  2. 确定状态转移方程:即子问题的解如何组合成大问题的解。
  3. 确定边界条件:即dp数组的初始状态。
  4. 确定遍历顺序:确定如何填满dp数组。

四、C++实现动态规划

以下是一个C++实现动态规划的示例,以背包问题为例。

1. 背包问题描述

假设有n个物品和一个背包,物品i的重量是w[i],价值是v[i],背包的容量是W。要求如何放入物品,使得背包中物品的总价值最大。

2. 状态定义

定义dp[i][j]表示考虑前i个物品,背包容量为j时能获得的最大价值。

3. 状态转移方程

  • 不取当前物品idp[i][j] = dp[i - 1][j]
  • 取当前物品i(如果不超过背包容量):dp[i][j] = dp[i - 1][j - w[i]] + v[i]

4. 边界条件

dp[0][j] = 0,表示没有物品时,任何容量的背包价值都是0。

5. 遍历顺序

遍历所有物品,对于每个物品,遍历所有可能的背包容量。

6. C++代码实现

#include <iostream>
#include <vector>
using namespace std;

const int MAXN = 1005; // 物品数量上限
const int MAXW = 1005; // 背包容量上限

int main() {
    int n, W;
    cin >> n >> W;
    vector<int> w(n), v(n);
    for (int i = 0; i < n; ++i) {
        cin >> w[i] >> v[i];
    }
    
    vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));
    
    for (int i = 1; i <= n; ++i) {
        for (int j = 0; j <= W; ++j) {
            if (w[i - 1] <= j) {
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i - 1]] + v[i - 1]);
            } else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }
    
    cout << dp[n][W] << endl;
    return 0;
}

五、动态规划的优化

  1. 空间优化:如果状态转移只依赖于前一个状态,可以只保留前一个状态的dp数组。
  2. 时间优化:在某些情况下,可以减少不必要的循环,如只遍历背包容量的子集。

六、动态规划的应用

动态规划可以应用于多种问题,包括但不限于:

  • 背包问题
  • 最长公共子序列
  • 最长递增子序列
  • 最短编辑距离
  • 图中的最短路径问题

七、总结

动态规划是一种强大的算法设计技巧,它通过避免重复计算来优化复杂问题的解决方案。掌握动态规划需要理解其基本思想,识别问题中的最优子结构和状态转移关系,并能够灵活地应用到不同的问题中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值