文章目录

1、人工智能
人工智能的研究领域包括 专家系统(Expert Systems)、机器学习(Machine Learning)、进化计算(Evolutionary Computation)、模糊逻辑(Fussy Logic)、计算机视觉(Computer Vision)、自然语言处理(NLP)、推荐系统(Recommender Systems)等。
序号 | 研究领域 分类 |
---|---|
1 | 专家系统(Expert Systems) |
2 | 机器学习(Machine Learning) |
3 | 进化计算(Evolutionary Computation) |
4 | 模糊逻辑(Fussy Logic) |
5 | 计算机视觉(Computer Vision) |
6 | 自然语言处理(NLP) |
7 | 推荐系统(Recommender Systems) |
目前的科研工作都集中在 弱人工智能 这部分,并很有希望在近期取得重大突破。
2、机器学习:一种实现人工智能的方法
随着人对计算机科学的期望越来越高,要求它解决的问题越来越复杂,已经远远不能满足人们的诉求了。于是有人提出了一个新的思路——能否不为难码农,让机器自己去学习呢?
机器学习就是用算法解析数据,不断学习,对世界中发生的事做出判断和预测的一项技术。研究人员不会亲手编写软件、确定特殊指令集、然后让程序完成特殊任务;相反,研究人员会用大量数据和算法“训练”机器,让机器学会如何执行任务。
这里有三个重要的信息:
1、“机器学习”是“模拟、延伸和扩展人的智能”的一条路径,所以是人工智能的一个子集;
2、“机器学习”是要基于大量数据的,也就是说它的“智能”是用大量数据喂出来的;
3、正是因为要处理海量数据,所以大数据技术尤为重要;“机器学习”只是大数据技术上的一个应用。
常用的10大机器学习算法有:决策树、随机森林、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔科夫。
算法名称 | 算法类型 | 核心思想 | 经典应用场景举例 |
---|---|---|---|
决策树 | 监督学习 - 分类/回归 | 树形结构,基于特征进行递归分割 | 金融风控、医疗诊断 |
随机森林 | 集成学习 | 多棵决策树投票,Bagging思想 | 高维数据建模 |
支持向量机 (SVM) | 监督学习 - 分类 | 寻找最优超平面,最大化间隔 | 文本分类、图像识别 |
朴素贝叶斯 | 监督学习 - 分类 | 基于贝叶斯定理与特征条件独立假设 | 垃圾邮件识别 |
K-近邻算法 (KNN) | 监督学习 - 分类/回归 | “物以类聚”,基于最近邻样本投票 | 鸢尾花分类 |
K-均值算法 (K-means) | 非监督学习 - 聚类 | 迭代优化,将样本划分到K个簇 | 用户分群、精准营销 |
自适应提升算法 (AdaBoost) | 集成学习 | 逐步调整样本权重,组合弱分类器为强分类器 | 异常检测(如信用卡欺诈) |
神经网络 (NN) | 监督/非监督学习 | 多层非线性变换,模拟生物神经元 | 图像识别、语音识别 |
逻辑回归 (LR) | 监督学习 - 分类 | Sigmoid函数映射,得到概率输出 | 疾病预测 |
主成分分析 (PCA) | 非监督学习 - 降维 | 正交变换,将原始数据投影到低维空间 | 数据可视化、特征压缩 |
3、深度学习:一种实现机器学习的技术
相较而言,深度学习是一个比较新的概念,严格地说是2006年提出的。
深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。
它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,神经网络也是其主要的算法和手段;或者我们可以将深度学习称之为改良版的神经网络算法。
深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep Belief Nets,简称DBN)。其主要的思想就是模拟人的神经元,每个神经元接受到信息,处理完后传递给与之相邻的所有神经元即可。所以看起来的处理方式有点像下图
神经网络的计算量非常大,事实上在很长时间里由于基础设施技术的限制进展并不大。而GPU的出现让人看到了曙光,也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。
击败李世石的 Alpha Go即是深度学习的一个很好的示例。Google的 TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型。事实上,提出“深度学习”概念的Hinton教授加入了Google,而Alpha Go也是Google家的。
总结:人工智能是一个很老的概念,机器学习是人工智能的一个子集,深度学习又是机器学习的一个子集。机器学习与深度学习都是需要大量数据来“喂”的,是大数据技术上的一个应用,同时深度学习还需要更高的运算能力支撑,如GPU。
3.1 核心内容与架构
深度学习的世界主要由不同的神经网络架构构成,每种架构专为特定类型的数据和任务而设计。下图揭示了其核心家族谱系与演进关系:
3.2 深度学习的全景图
架构 | 核心思想 | 擅长领域 | 代表模型 |
---|---|---|---|
MLP | 全连接,基础非线性变换 | 结构化数据(表格) | |
CNN | 局部连接、参数共享、池化 | 计算机视觉(图像、视频) | LeNet, AlexNet, ResNet |
RNN/LSTM | 循环连接,具有记忆功能 | 自然语言处理、时间序列分析 | |
Transformer | 自注意力机制,全局依赖 | NLP(已成为绝对主流)、语音 | GPT, BERT, T5 |
GAN | 生成器与判别器的对抗博弈 | 生成任务(图像、视频、语音生成) | StyleGAN, BigGAN |
3.3 深度学习 vs 机器学习
尽管深度学习在图像识别、自然语言处理等领域取得了革命性成功,但传统机器学习算法在以下方面具有不可替代的优势:
1.数据量需求不同 (Data Efficiency)
- 深度学习:通常需要海量的标注数据(数万甚至数百万个样本)才能训练出有效的模型。它的强大能力很大程度上来自于从大数据中学习。
- 传统机器学习(如SVM、决策树、逻辑回归):在中小型数据集上往往表现更好、更稳定。如果你只有几百或几千个数据点,用深度学习很容易过拟合,而传统方法可能是更优选择。
2.计算资源成本不同 (Computational Cost)
- 深度学习:训练复杂的深度学习模型需要强大的计算资源,通常是GPU或TPU集群。训练过程可能耗时数小时甚至数周,成本高昂。
- 传统机器学习:训练和部署通常轻量、快速,可以在普通的CPU上短时间内完成,开发和计算成本低得多。
3.可解释性不同 (Interpretability)
- 深度学习:常常被看作是一个“黑盒子”。我们很难理解模型内部究竟是如何做出某个特定决策的。这在医疗、金融、司法等需要决策透明的领域是重大缺陷。
- 传统机器学习(特别是决策树、线性模型等):可解释性更强。我们可以清楚地看到哪些特征对决策影响最大(例如,逻辑回归模型的系数),从而更容易理解和信任模型的输出。
4.任务类型与适用场景不同 (Right Tool for the Job)
深度学习并非在所有任务上都是霸主。很多场景下,传统算法是更合适的工具:
- 表格化数据 (Tabular Data):对于结构化的、基于表格的数据(比如Excel表格、数据库表),梯度提升树(Gradient Boosting) 算法(如XGBoost, LightGBM, CatBoost)的表现经常能击败深度学习,且训练更快、更易于调参。
- 需要快速原型和验证:当一个项目刚开始,需要快速验证一个想法是否可行时,先用简单的逻辑回归或KNN跑一个基线模型是更明智、更高效的做法。
- 统计推断:如果你不仅想知道预测结果,还想知道特征之间的关系(例如,“价格每上涨1元,销量会下降多少?”),线性回归等统计模型能直接给出清晰的解释。
特性 | 传统机器学习 (如 SVM, 随机森林) | 深度学习 (如 CNN, RNN, Transformer) |
---|---|---|
数据量 | 中小型数据 | 海量数据 |
硬件需求 | CPU即可 | 需要GPU/TPU |
可解释性 | 相对较好 | 黑盒子 |
特征工程 | 需要精心设计 | 能自动学习特征 |
典型应用 | 表格数据、统计推断、快速原型 | 图像、语音、文本、复杂序列数据 |
一个典型的工作流程可能是:
1.从一个业务问题开始。
2.首先尝试一个简单的传统机器学习模型(如逻辑回归)作为基线。
3.如果数据是图像、文本或语音,或者基线模型性能不足,且你拥有大量数据和计算资源,再考虑使用深度学习。
4.对于表格数据,可以尝试梯度提升树这类强大的集成算法。
5.最终根据性能、成本、可解释性和部署需求,选择最合适的模型。
3.4 深度学习已经取得的进展
虽然深度学习是机器学习一个相当有年头的分支领域,但在 21 世纪前十年才崛起。在随后的几年里,它在实践中取得了革命性进展,在视觉和听觉等感知问题上取得了令人瞩目的成果,而这些问题所涉及的技术,在人类看来是非常自然、非常直观的,但长期以来却一直是机器难以解决的。
特别要强调的是,深度学习已经取得了以下突破,它们都是机器学习历史上非常困难的领域:
- 接近人类水平的图像分类
- 接近人类水平的语音识别
- 接近人类水平的手写文字转录
- 更好的机器翻译
- 更好的文本到语音转换
- 数字助理,比如谷歌即时(Google Now)和亚马逊 Alexa
- 接近人类水平的自动驾驶
- 更好的广告定向投放,Google、百度、必应都在使用
- 更好的网络搜索结果
- 能够回答用自然语言提出的问题
- 在围棋上战胜人类