代码随想录day28 贪心算法part02

122.买卖股票的最佳时机II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。
示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
最大总利润为 4 。

如果股票是[1,2,3],那我如果每天都买卖,和第一天买第三天卖的结果是一样的。所以只要第二天价格比本天高就买,否则不买。

class Solution {
    public int maxProfit(int[] prices) {
        int diff = 0;
        int res = 0;
        for (int i = 0; i < prices.length - 1; i++) {
            diff = prices[i + 1] - prices[i];
            if (diff > 0) {
                res += diff;
            }
        }
        return res;
    }
}

55.跳跃游戏

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

maxlen代表我此时能到达的最大长度
temp代表从当前位置能到达的最大长度
如果temp大于maxlen,那么更新maxlen
如果当前到达的最大长度maxlen小于当前位置i,那说明不能到达最后一个下标
如果最后的长度比数组长度大,说明可以达到

class Solution {
    public boolean canJump(int[] nums) {
        int maxlen = 0;
        int temp = 0;
        for (int i = 0; i < nums.length; i++) {
            if (maxlen < i) {
                return false;
            }
            temp = nums[i] + i;
            maxlen = Math.max(temp, maxlen);
        }
        if (maxlen >= nums.length - 1) {
            return true;
        }
        return false;
    }
}

45.跳跃游戏II

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。

每个元素 nums[i] 表示从索引 i 向后跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

当下表达到了当前覆盖的最远距离下标时,步数+1,最后的步数就是最少步数。
如果当前覆盖最远距离下标不是集合终点,步数+1
如果当前覆盖最远距离下标是集合终点,步数不用+1

class Solution {
    public int jump(int[] nums) {
        if (nums.length == 1) {
            return 0;
        }
        int curLength = 0;
        int res = 0;
        int nextLength = 0;
        for (int i = 0; i < nums.length; i++) {
            nextLength = Math.max(nextLength, i + nums[i]);
            if (i == curLength) {
                res++;
                curLength = nextLength;
                if (nextLength >= nums.length - 1) {
                    break;
                }
            }
        }
        return res;
    }
}

1005.k次取反后最大化的数组和

给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组:

选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。
重复这个过程恰好 k 次。可以多次选择同一个下标 i 。

以这种方式修改数组后,返回数组 可能的最大和 。

示例 1:

输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:

输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:

输入:nums = [2,-3,-1,5,-4], k = 2
输出:13
解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。

贪心算法:将数组按绝对值大小从大到小排序,然后从前向后遍历,如果是负数且k>0,那么就把他变为正数。如果遍历完k还大于0,那么反转数值最小的元素。

但是呢int型的数组不能自定义排序器Comparator,只有Integer的可以,但是那还要装箱拆箱,所以还是直接排序,然后从小到大遍历,如果k>0且是负数就把它变成正数
如果遍历到正数就跳出循环,因为后面的肯定都是正数。接下来就是看此时的k是奇数还是偶数再把最小值取相反数即可。这里逻辑要考虑边界条件。

class Solution {
    public int largestSumAfterKNegations(int[] nums, int k) {
        Arrays.sort(nums);
        int i;
        int res = 0;
        for (i = 0; i < nums.length; i++) {
            if (nums[i] < 0 && k > 0) {
                nums[i] *= -1;
                k--;
            } else {
                break;
            }
        }
        if (k % 2 == 1) {
            if (i > 0 && i < nums.length) {
                if (nums[i] > nums[i - 1]) {
                    nums[i - 1] *= -1;
                } else {
                    nums[i] *= -1;
                }
            } else if (i == 0) {
                nums[i] *= -1;
            } else if (i == nums.length) {
                nums[i - 1] *= -1;
            }

        }
        for (i = 0; i < nums.length; i++) {
            res += nums[i];
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值