Longest Increasing Subsequence————LIS个数

本文介绍了一种计算给定序列中特定长度严格递增子序列数量的方法,并提供了一个C++实现示例。该算法使用动态规划技术,能够有效地解决大规模数据集的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Longest Increasing Subsequence
描述
给出一组长度为nn的序列,a1,a2,a3,a4...ana1,a2,a3,a4...an求出这个序列长度为kk的严格递增子序列的个数

输入
第一行输入T组数据T(0T10)T(0≤T≤10)
第二行输入序列大小n(1n100)n(1≤n≤100),长度k(1kn)k(1≤k≤n)
第三行输入n个数字ai(0ai1e9)ai(0≤ai≤1e9)

输出
数据规模很大, 答案请对1e9+71e9+7取模

输入样例 1
2
3 2
1 2 2
3 2
1 2 3
输出样例 1
2
3


dp[i][j]:=ijLISdp[i][j]:=表示以i结尾,长度为j的LIS的数量

#include<bits/stdc++.h>
using namespace std;

const int MAXN=105;
const int mod=1e9+7;
int a[MAXN];
int dp[MAXN][MAXN];
int n,m;
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        scanf("%d %d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            dp[i][1]=1;
        }

        for(int i=1;i<=n;i++)
            for(int j=1;j<=i;j++)
                for(int k=1;k<i;k++)
                    if(a[i]>a[k])
                        dp[i][j]=(dp[i][j]+dp[k][j-1])%mod;
        int ans=0;
        for(int i=1;i<=n;i++)
            ans = (ans + dp[i][m])%mod;

        printf("%d\n",ans);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值