5.7 矩阵的逆的性质

本文探讨了矩阵逆的唯一性,通过反证法证明若矩阵A有逆矩阵B,那么B是唯一的。同时阐述了(A的逆矩阵)的逆矩阵仍等于A,并利用数学推导证明了矩阵乘法的逆矩阵性质和转置逆矩阵的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的逆的性质

  1. 对于矩阵A,如果存在逆矩阵B,则B唯一
    证明唯一性 ==> 反证法

==> 假设矩阵A存在两个不同的逆矩阵B和C
AB = AC = I
B(AB) = B(AC)
结合律 ==> (BA)B = (BA)C
==> B = C
所以假设错误。
==> 对于矩阵A,如果存在逆矩阵B,则B唯一。

  1. (A的逆矩阵)的逆矩阵 还等于 A ==> (X的逆矩阵) = A
    在这里插入图片描述
    证明 XA = I , AX = I
    ==>
    在这里插入图片描述

  2. (A . B)的逆 = B的逆 . A的逆
    在这里插入图片描述证明 >
    在这里插入图片描述
    乘法结合律
    >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值