OptiStruct结构分析与工程应用:响应谱分析的表达式

响应谱分析也常称为冲击响应谱分析。它是一种用于估计结构冲击性基础激励作用下最大瞬态响应的分析技术,在建筑物抗震设计中,有较广泛的应用。对于传统的瞬态分析而言,响应谱分析计算过程只需要进行模态分析和简单叠加,极大地精简了计算,是一种代价很低的峰值响应近似评估方法。

响应谱是这样一条曲线、它描述的是单自由系统在基础冲击载荷下的最大响应和固有频率之间的关系。他并非传统意义上的频谱,而是作为模态响应的加权系数被用于估计结构最大响应,通常由设计规范给出。当结构收到的基础冲击激励具有不确定性,但冲击能量分布又是一定规律时,采用响应谱粉洗能够满足评估结构的最大需求。

OptiStruct响应谱分析提供了几种组合方法来估计结构的峰值响应。用户可以自定义模态响应的组合方式以及正交冲击的组合方式。所需的输入人为结构在不同阻尼情形下的响应谱曲线。

响应谱分析的表达式9.1

9.1.1 基础冲击激励的模态坐标

响应谱分析求解的是结构相对基础(可理解为“地面”或“基础支撑结构”等)产生的。极大值,如相对位移、相对加速度等,求解过程中利用了模态分解的基本理念。结构动力学医应位移表达式为

式中,“为响应u在第k自由度的响应;为第i阶模态振型4:在第k自由度的响应。假定最初结构为静止状态,在零时刻受到极短时间的基础冲击,于是在t=0时刻产生了相基础的初始位移u(0),以及对应的初始模态坐标q(0)。

随后各个模态坐标q(t)将在初始条件下进行自由振动,对应的时间历程曲线为

注意这里的“(1)是扣除基础强制运动的相对位移。在OptiStruct模态法瞬态分析中,使用队RAM,ENFMOTN,REL可输出该相对位移。

9.1.2 峰值响应的近似表达

在响应谱分析中,使用模态参与因子p,取代了式(9-1)中的模态坐标q,并使用响应谱曲线x(ω)进行峰值响应校正。结构相对基础的峰值响应记为山,取近似表达式为

其中,p;为第i阶模态的参与因子(参考5.1.6节):

P;=:Mx

为响应谱曲线x(ω)在第i阶固有频率w,的数值:

X; =x(ω;)

它是模态φ,在典型基础冲击激励下的峰值响应,用于矫正峰值响应”。

可以看到,响应谱分析式(9-5)与瞬态响应式(9-1)是高度相似的;模态参与因子表达式(9-6)与瞬态响应模态坐标表达式(9-3)也是高度相似的。OptiStruct进行响应谱分析时会预先进行模态分析,可获得各阶模态q,和模态参与因子p,于是式(9-5)的进一步计算只需要确定响应谱曲线x(ω)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值