CDQ分治 && 整体二分

本文详细介绍了CDQ分治算法的特点、适用条件及步骤,通过二维偏序、三维偏序问题及其拓展实例,展示了CDQ分治在替代复杂数据结构、降低时间复杂度方面的优势。同时,对比了CDQ分治与树状数组、树套树等方法在解决特定问题时的优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CDQ分治

此为CDQ分治的学习博客,有一些讲解和经典例题。

简单介绍

首先,我们对CDQ分治进行简单介绍。

1.CDQ分治的特点

  • 使用CDQ分治可以顶替复杂的高级数据结构,而且常数比较小;缺点在于必须离线操作。

2.使用CDQ的条件

  • 修改操作对询问的贡献独立,修改操作互不影响。(这篇博客是初学CDQ的博客,一些概念是直接从其他博客中参考过来的,理解可能不是很深入,学习深入后会进行修改)
  • 不强制在线

3.CDQ分治的性质

  • 时间复杂度中,将一层 nnn 降为 log(n))log(n))log(n)) 达到降维
  • 可以用其代替一些复杂的数据结构(如树套树),并节省一定空间
  • 对于CDQ分治划分出来的两个区间,解决后一个问题的子问题时要用到前一个区间。

4.CDQ分治的步骤

  • 将操作序列分为l−midl-midlmidmid+1−rmid + 1- rmid+1r两个部分。
  • 递归处理前一部分的子问题 —— 治1
  • 计算前一部分的修改操作对后一部分子问题的影响 —— 治2
  • 递归处理后一部分的子问题 —— 治3

讲解

我们学习过归并排序,而归并排序就有一部分CDQ分治的思想。对于CDQ分治可以这样想:对于整个序列的问题,我先把它分为两个子问题,假设这两个子问题都解决了,就考虑怎样将这两个子问题的结果合并;在归并排序里面,没有修改等操作,所以就直接把两部分合并。
CDQ分治中因为有修改、求和等操作,每次都要计算左区间(即前一个子问题)的修改对后面区间的求和 / 查询的影响(左右区间已经得到了结果,我现在要做的是把这两个完成的区间合并成最终的区间,所以只计算左面区间变化对右面区间的影响,而不去管他们区间内部的事情),合并好了就可以得到答案。


我们通过问题引入。

二维偏序问题

给定 nnn 个有序对,求对于每个 (a,b)(a, b)(a,b), 满足 ai<a,bi<bai<a,bi < bai<a,bi<b(ai,bi)(ai,bi)(ai,bi)的数量

我们从归并排序求逆序对来引入二维偏序问题。

归并排序求逆序对的过程中,在合并两个子区间的时候,要考虑到左边区间对右边区间的影响。即我们每次从右边区间的有序序列中取出一个元素的时候,要把“以这个元素结尾的逆序对的个数”加上“左边区间有多少个元素比他大”。这是一个典型的CDQ分治的过程。

把这个问题拓展到二维偏序问题。在归并排序求逆序对的过程中,每个元素可以用一个有序对(a,b)(a,b)(a,b)表示,其中aaa表示元素在数组中的位置,bbb表示该位置对应的值。我们求的就是“对于每个有序对(a,b)(a,b)(a,b),有多少个有序对 (ai,bi)(ai,bi)(ai,bi) 满足 ai<a,bi>bai<a,bi>bai<a,bi>b,这就是一个二维偏序问题。

在求逆序对的问题中,aaa 元素是默认有序的,即我们拿到元素的时候,数组中的元素是默认从第一个到最后一个按顺序排列的,所以我们才能在合并子问题的时候忽略 aaa 元素带来的影响。因为我们在合并两个子问题的过程中,左边区间的元素一定出现在右边区间的元素之前,即左边区间的 aaa 都小于右边区间的 aaa

那么对于二维偏序问题,我们在拿到所有有序对 (a,b)(a,b)(a,b) 的时候,先把 aaa 元素从小到大排序。这时候问题就变成了 “求顺序对” ,因为 aaa 元素已经有序,可以忽略 aaa 元素带来的影响,和 “求逆序对” 的问题是一样的。

考虑二维偏序问题的另一种解法,用树状数组代替CDQ分治,即常用的用树状数组求顺序对。在按照 aaa 元素排序之后,我们对于整个序列从左到右扫描,每次扫描到一个有序对,求出“扫描过的有序对中,有多少个有序对的 bbb 值小于当前 bbb 值”,可以用 权值树状数组 或 权值线段树实现。然而当 bbb 的值非常大的时候,空间和时间上就会吃不消,便可以用CDQ分治代替,就是所说的“顶替复杂的高级数据结构”。

二维偏序问题的拓展 —— 区间操作

给定一个 nnn 个元素的序列 aaa,初始值全部为 000,对这个序列进行以下两种操作:

  • 操作1:格式为1 x k,把位置 xxx 的元素加上 kkk(位置从 111 标号到 nnn )。
  • 操作2:格式为2 x y,求出区间 [x,y][x,y][x,y] 内所有元素的和。

这是一个经典的树状数组问题,现在我们用CDQ分治解决它——带修改和查询的问题。

我们把他转化成一个二维偏序问题,每个操作用一个有序对 (a,b)(a,b)(a,b) 表示,其中 aaa 表示操作时间,bbb 表示操作位置,时间默认有序,所以我们在合并子问题的过程中,就按照bbb从小到大的顺序合并。

可这样如何表示修改与查询?

具体细节参见代码,这里对代码做一些解释。我们定义结构体 AskAskAsk 包含 333 个元素:Type、Index、ValType、Index、ValTypeIndexVal,其中 IndexIndexIndex 表示操作的位置;TypeTypeType111 表示修改,ValValVal 表示加上的值;对于查询,我们用前缀和差分把他分解成两个操作:Sum[1,y]−Sum[1,x−1]Sum[1,y]-Sum[1,x-1]Sum[1,y]Sum[1,x1],即两次前缀和的查询。在合并的过程中,TypeTypeType222 表示一个查询的左端点 x−1x-1x1,需要把该查询的结果减去当前 “加上的值的前缀和”,TypeTypeType333 表示一个查询的右端点 yyy,需要把查询的结果加上当前 “加上的值的前缀和”,ValValVal 表示是第几个查询。这样,我们就把每个操作转换成了带有附加信息的有序对 (时间,位置) ,然后对整个序列进行CDQ分治。

具体实现中需要注意几点问题:

  • 对于位置相同的操作,要先修改后查询。(就算时间上是先查询后修改,这样操作左右区间其实都是同时加上的,他们之间的差还是不同的,但是如果先查询后修改的话,区间后面的端点会比前面多加了一个数字。。要注意让这个区间改变的只有区间里面数字变化,这个区间外面怎样变化根本不会影响这个区间和的变化,所以左面端点的左面多加了也无所谓)
  • 合并问题的时候统计 “加上的值的前缀和” ,只能统计左边区间内的修改操作,改动查询结果的时候,只能修改右边区间内的查询结果。因为只有左边区间内的修改值对右边区间内的查询结果的影响还没有统计。(合并两个子问题,只讨论左面区间的修改对右面区间的影响)
  • 代码中,给定的数组是有初始值的,可以把每个初始值变为一个修改操作。
Code:
#include <cstdio>
#define DB double
#define MAXN 500005
#define LL long long
#define Int register int
using namespace std;
inline void read(LL &x)
{
	x = 0;
	LL f = 1;
	char s = getchar();
	while (s < '0' || s > '9')
	{
		if (s == '-')
			f = -1;
		s = getchar();
	}
	while (s >= '0' && s <= '9')
	{
		x = (x << 3) + (x << 1) + (s ^ 48);
		s = getchar();
	}
	x *= f;
}
LL n, m;
struct node
{
	LL Type, Index, Val;
	/*Type = 1: 修改
	  Type = 2: 查差分左端点 
	  Type = 3: 查差分右端点 
	*/
	node(){}
	node(LL TYPE,LL INDEX,LL VAL)
	{
		Type = TYPE;
		Index = INDEX;
		Val = VAL;
	}
	bool operator<(const node &t) const{
		// 按位置排序,修改优先级大于查询 
		return Index == t.Index ? Type < t.Type : Index < t.Index;
	}
}Ask[(MAXN << 1) + MAXN];
LL tot, Qtot, Ans[MAXN];
node Temp[(MAXN << 1) + MAXN];
void CDQ(LL l,LL r)
{
	if (r - l < 1)
		return ;
	LL Mid = (l + r) / 2;
	CDQ(l, Mid); CDQ(Mid + 1, r);
	LL Sum = 0;
	LL tl = l, tr = Mid + 1, Now = 0;
	while (tl <= Mid && tr <= r)
	{
		if (Ask[tl] < Ask[tr]) // 只统计左区间的修改值 
		{
			if (Ask[tl].Type == 1) // 加上修改值
				Sum += Ask[tl].Val;
			Temp[++ Now] = Ask[tl ++];
		}
		else
		{
			if (Ask[tr].Type == 2) // 减去左区间的影响 
				Ans[Ask[tr].Val] -= Sum;
			else if (Ask[tr].Type == 3) // 加上左区间的影响 
				Ans[Ask[tr].Val] += Sum;
			Temp[++ Now] = Ask[tr ++];
		}
	}
	while (tl <= Mid)
		Temp[++ Now] = Ask[tl ++];
	while (tr <= r)
	{
		if (Ask[tr].Type == 2)
			Ans[Ask[tr].Val] -= Sum;
		else if (Ask[tr].Type == 3)
			Ans[Ask[tr].Val] += Sum;
		Temp[++ Now] = Ask[tr ++];
	}
	for (Int i = 1; i <= Now; ++ i)
		Ask[i + l - 1] = Temp[i];
}
int main()
{
	read( n ); read( m );
	for (Int i = 1; i <= n; ++ i)
	{
		Ask[i].Type = 1; Ask[i].Index = i;
		read( Ask[i].Val );
		// 初始元素转化为修改操作 
	}
	tot = n;
	for (Int i = 1; i <= m; ++ i)
	{
		LL Kind;
		read( Kind );
		if (Kind == 1)
		{
			Ask[++ tot].Type = Kind;
			read( Ask[tot].Index );
			read( Ask[tot].Val );
		}
		else
		{
			++ Qtot; 
			LL l, r;
			read( l ); read( r );
			Ask[++ tot].Type = Kind;
			Ask[tot].Index = l - 1, Ask[tot].Val = Qtot;
			// 为 l - 1的减区间,记录查询的序号
			Ask[++ tot].Type = Kind + 1;
			Ask[tot].Index = r, Ask[tot].Val = Qtot;
			// 为 r 的增区间, 记录查询的序号 
		}
	}
	CDQ(1, tot);
	for (Int i = 1; i <= Qtot; ++ i)
		printf("%lld\n", Ans[i]);
	return 0;
}

三维偏序问题

给定 nnn 个有序三元组 (a,b,c)(a,b,c)(a,b,c), 求对于(a,b,c)(a,b,c)(a,b,c),有多少个 (ai,bi,ci)(ai,bi,ci)(ai,bi,ci), 满足 ai<a,bi<b,ci<cai<a,bi<b,ci<cai<a,bi<b,ci<c

不用CDQ分治的方法:先按照 aaa 元素排序,从左到右扫描。按照 bbb 元素构造权值树状数组,树状数组每个节点按照 ccc 元素构造平衡树。树套树的解法不仅 zxy 数大,而且代码量巨大,还容易写错。

类似二维偏序问题,先按照 aaa 元素从小到大排序,然后CDQ分治,按照 bbb 元素从小到大归并。但是这时候没办法像求逆序对一样简单地统计个数了,ccc 元素如何处理?

选择权值树状数组。每次从右边的序列中取出三元组 (a,b,c)(a,b,c)(a,b,c) 时,对树状数组查询 ccc 值小于 (a,b,c)(a,b,c)(a,b,c) 的三元组有多少个;每次从左边序列取出三元组 (a,b,c)(a,b,c)(a,b,c) 的时候,根据 ccc 值在树状数组中进行修改。树状数组记得清空。

三维偏序拓展

平面上有mmm个点,坐标为[0,1e7][0,1e7][0,1e7]mmm个询问,每个询问给出(x1,x2,y1,y2)(x1,x2,y1,y2)(x1,x2,y1,y2)的矩阵,求出矩阵中的点个数。

如果开二维线段树或二维树状数组,空间吃不消。似乎可以用K-D树?这里,我们使用CDQ分治。

我们把点的位置改为修改操作,用三元组(t,x,y)(t,x,y)(t,x,y)表示时间、横纵坐标。把每个矩阵的查询分解为444个前缀和查询;对于每个查询操作,附加记录是“第几个查询”,“是左区间查询还是右区间查询”。如此,进行CDQ分治,按照横坐标从小到大排序,树状数组维护纵坐标信息。(其实,也可以使用CDQ套CDQ)

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 500005
#define lowbit(x) x & (-x)
#define MAXQ MAXN + (MAXN << 2)
#define LL long long
#define Int register int
using namespace std;
inline void read(LL &x)
{
	x = 0;
	LL f = 1;
	char s = getchar();
	while (s < '0' || s > '9')
	{
		if (s == '-')
			f = -1;
		s = getchar();
	}
	while (s >= '0' && s <= '9')
	{
		x = (x << 3) + (x << 1) + (s ^ 48);
		s = getchar();
	}
	x *= f;
}
inline LL Max(LL x,LL y)
{
	if (x > y)
		return x;
	return y;
}
LL n, m, tot, Maxy;

LL Arr[MAXN];
inline void Add(LL x,LL Val)
{
	for (Int i = x; i <= Maxy; i += lowbit( i ))
		Arr[i] += Val;
}
inline LL Query(LL x)
{
	LL Res = 0;
	for (Int i = x; i; i -= lowbit( i ))
		Res += Arr[i];
	return Res;
}
inline void Clear(LL x)
{
	for (Int i = x; i <= Maxy; i += lowbit( i ))
		if ( Arr[i] )
			Arr[i] = 0;
		else break;
}
struct node
{
	LL Type, x, y, w, Aid;
	node(){}
	node(LL TYPE,LL X,LL Y,LL W,LL AID)
	{
		Type = TYPE;
		x = X;
		y = Y;
		w = W;
		Aid = AID;
	}
	friend bool operator <(node A,node B)
	{
		return A.x == B.x ? A.Type > B.Type : A.x > B.x;
	}
}Ask[MAXQ], Temp[MAXQ];
LL Qtot, Ans[MAXN];
inline void CDQ(LL l,LL r)
{
	if (r - l < 1)
		return ;
	LL Mid = (l + r) / 2;
	LL tl = l, tr = Mid, o = l;
	while (tl <= Mid && tr <= r)
	{
		if (Ask[tl] < Ask[tr])
		{
			if (Ask[tl].Type == 0)
				Add(Ask[tl].y, 1); // 挂点 
			Temp[o ++] = Ask[tl ++]; // 
		}
		else
		{
			if (Ask[tr].Type == 1)
				Ans[Ask[tr].Aid] += Ask[tr].w * Query( Ask[tr].y ); // 挂点挂完了 
			Temp[o ++] = Ask[tr ++];
		}
	}
	while (tl <= Mid)
		Temp[o ++] = Ask[tl ++];
	while (tr <= r)
	{
		if (Ask[tr].Type == 1)
			Ans[Ask[tr].Aid] += Ask[tr].w * Query( Ask[tr].y );
		Temp[o ++] = Ask[tr ++];
	}
	for (Int i = l; i <= r; ++ i)
	{
		Clear( Temp[i].y );
		Ask[i] = Temp[i];
	}
}
int main()
{
	read( n ); read( m );
	for (Int i = 1; i <= n; ++ i)
	{
		LL x, y;
		read( x ); read( y );
		++ x, ++ y;
		Maxy = Max(Maxy, y);
		Ask[i] = node(0, x, y, 0, 0);
	}
	Qtot = n;
	for (Int i = 1; i <= m; ++ i)
	{
		LL x1, y1, x2, y2;
		read( x1 ); read( y1 );
		read( x2 ); read( y2 );
		Ask[++ Qtot] = node(1, x1 - 1, y1 - 1, 1, i);
		Ask[++ Qtot] = node(1, x2, y1 - 1, -1, i);
		Ask[++ Qtot] = node(1, x1, y2 - 1, -1, i);
		Ask[++ Qtot] = node(1, x2, y2, 1, i);
		Maxy = Max(Maxy, y2);
	}
	CDQ(1, Qtot);
	for (Int i = 1; i <= m; ++ i)
		printf("%lld\n", Ans[i]);
	return 0;
}

四维偏序

五维偏序

整体二分

整体二分比CDQ友好一些。

所谓整体二分,就是把所有询问一起二分,但zxy数挺大的。 整体二分支持离线区间问题,二分达到单个询问 nlognlognlog的这类询问。一般而言复杂度为 nlog2nlog^2nlog2,增加的logloglog一般为树状数组的复杂度。

思路

首先,我们将每个有权值的位置放到一个队列里,然后在权值后面,所有操作也放进队列里。

接着,我们二分一个值,将所有这个值下仍合法的询问丢到右区间处理。(也就是它们的二分区间变成了[mid+1,r][mid+1,r][mid+1,r]),同时将大于等于midmidmid的权值和修改权值丢到右边,因为它们会对且仅对右区间的询问产生贡献。

左区间同理。

当二分区间 l=rl=rl=r时,更新所有二分区间为这个询问的答案。

大致的步骤为:定义一个整体二分函数Solve(Ql,Qr,l,r)Solve(Ql,Qr,l,r)Solve(Ql,Qr,l,r),代表的是:现在处理的是[Ql,Qr][Ql,Qr][Ql,Qr]区间内的操作和权值序列,它们对应的二分区间都是[l,r][l,r][l,r]。每次求出有Len1Len1Len1个操作或权值需要丢进左区间,Len2Len2Len2个需要丢到右区间。我们将这些操作取出来重新摆放:那Len1Len1Len1个区间都在[Ql,Ql+Len1−1][Ql,Ql+Len1-1][Ql,Ql+Len11]这段区间,且按照时间顺序摆放。其余Len2Len2Len2个操作同理。

那么我们递归处理Solve(Ql,Ql+Len1−1,l,mid)Solve(Ql, Ql+Len1-1,l,mid)Solve(Ql,Ql+Len11,l,mid)Solve(Ql+Len1,Qr,mid+1,r)Solve(Ql+Len1,Qr,mid+1,r)Solve(Ql+Len1,Qr,mid+1,r)

我们通过两道例题更好地理解一下

例一:静态区间第k小

首先,我们将值和询问放入操作序列中进行二分。对于一个区间,我们二分一个midmidmid,如果以midmidmid为标准的左区间大小是最小的值使其为kkk,那么midmidmid就为区间第kkk小。

对于一个值,如果小于等于midmidmid就放入左区间,并在这个值的位置上+1+1+1的贡献,反之放入右区间。对于查询,只用看区间内贡献是否小于等于kkk,如果满足放入右区间找其midmidmid上界,反之放入左区间找其midmidmid下界。

例二:动态区间第k小

思路和静态大致相似,只需要:将修改操作改为:清零+赋值即可。

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一的问题和你的回答",但用户没有上一问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$间内完成。 整个算法的间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值