注意:该项目只展示部分功能,如需了解,文末咨询即可。
1 开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
随着现代社会生活节奏的加快和工作压力的增大,心理健康问题日益凸显,成为影响社会发展和个人幸福的重要因素。传统的心理健康评估和干预方式往往依赖于主观判断和有限的样本分析,缺乏系统性和科学性的数据支撑。面对海量的心理健康相关数据,如何运用大数据技术对个体生活方式、工作环境、心理指标等多维度信息进行深度挖掘和综合分析,已成为心理健康领域的迫切需求。基于此背景,开发一个基于大数据分析的心理和健康影响因素挖掘系统,能够为心理健康的精准化评估、预防和干预提供科学的数据支撑和决策依据。
基于大数据分析的心理和健康影响因素挖掘系统基于大数据技术构建心理健康综合数据分析平台,运用Python、Spark、Hadoop等技术对心理健康相关数据进行深度挖掘和分析。研究内容主要围绕四个核心维度展开:首先是个体生活方式与心理健康状况的关联性研究,通过分析年龄、性别、睡眠、运动等基础因素与心理健康指标的相互作用,识别影响心理健康的关键生活方式因素;其次是工作环境对心理健康影响的系统性分析,重点关注雇佣状态、工作模式等职业相关因素如何成为心理健康的压力源或支持系统;第三是心理健康核心指标的内在关联性剖析,深入探究抑郁、焦虑、压力等负面指标之间的相互作用机制;最后是基于机器学习算法的综合心理健康风险画像构建,运用无监督学习技术发现典型的用户群体模式。整个研究通过MySQL数据库存储,结合Vue前端框架和Echarts可视化技术,为用户提供直观、交互式的数据分析和展示平台,最终实现心理健康问题的精准识别、预警和干预指导。基于大数据分析的心理和健康影响因素挖掘系统具体功能研究内容如下:
1.个体生活方式分析方面: 不同年龄分段的平均压力水平分析通过将人群划分为青年、中年、老年等分段,识别承受更高压力的年龄群体。不同性别群体的核心情绪指标对比揭示性别在情绪困扰表现上的差异,推动性别敏感性的心理健康服务。
2.工作环境影响分析方面: 不同雇佣状态下的心理健康风险分布精准定位心理健康问题高发的职业群体,为就业援助提供决策依据。不同工作模式的压力水平与社交支持对比帮助企业平衡效率与员工身心健康需求。
3.核心指标关联分析方面: 压力水平与抑郁得分的相关趋势分析警示慢性压力导致抑郁的风险。焦虑得分与抑郁得分的共生关系分析为临床诊断提供重要提示。
4.风险画像构建方面: 基于核心指标的用户聚类分析发现"高压高能型"、"社交孤立型"等典型画像,实现人群的精细化分群管理。各用户群体的关键特征雷达图分析使每个群体的多维特征一目了然,为针对性干预提供科学依据。
3 系统展示
3.1 功能展示视频
基于hadoop+python的心理健康综合数据分析系统源码 !!!请点击这里查看功能演示!!!
3.2 大屏页面
3.3 分析页面
3.4 数据页面
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
计算机专业毕业设计选题深度剖析,掌握这些技巧,让你的选题轻松通过,文章附35个优质选题助你顺利通过开题!
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
基于Hadoop与Spark协同处理的学生辍学风险因素数据分析与可视化
基于Hadoop+Spark的学生考试表现影响因素分析系统
基于Hadoop+Spark的学生抑郁数据分析与可视化系统
5 部分功能代码
def analyze_employment_mental_health_risk(self):
"""
2.1 不同雇佣状态下的心理健康风险分布
Returns:
dict: 雇佣状态与心理健康风险分布分析结果
"""
try:
# 按雇佣状态和心理健康风险等级进行交叉分析
risk_distribution = pd.crosstab(
self.df['employment_status'],
self.df['mental_health_risk'],
normalize='index'
) * 100 # 转换为百分比
# 计算各雇佣状态的风险统计
employment_risk_stats = self.df.groupby('employment_status')['mental_health_risk'].agg([
lambda x: (x == '高').sum(), # 高风险人数
lambda x: (x == '中').sum(), # 中风险人数
lambda x: (x == '低').sum(), # 低风险人数
'count' # 总人数
])
employment_risk_stats.columns = ['高风险人数', '中风险人数', '低风险人数', '总人数']
result = {
'analysis_type': '不同雇佣状态下的心理健康风险分布',
'risk_distribution_percentage': risk_distribution.to_dict(),
'risk_counts': employment_risk_stats.to_dict(),
'insights': self._generate_employment_risk_insights(risk_distribution, employment_risk_stats)
}
print("雇佣状态-心理健康风险分析完成")
return result
except Exception as e:
print(f"雇佣状态-心理健康风险分析失败: {e}")
return None
def analyze_work_environment_stress_support(self):
"""
2.2 不同工作模式的压力水平与社交支持对比
Returns:
dict: 工作模式对压力和社交支持影响的分析结果
"""
try:
# 按工作环境分组分析压力水平和社交支持
work_env_analysis = self.df.groupby('work_environment').agg({
'stress_level': ['mean', 'std', 'count'],
'social_support_score': ['mean', 'std', 'count']
}).round(2)
# 计算工作模式间的差异
work_mode_comparison = {}
for work_env in self.df['work_environment'].unique():
env_data = self.df[self.df['work_environment'] == work_env]
work_mode_comparison[work_env] = {
'avg_stress': env_data['stress_level'].mean(),
'avg_social_support': env_data['social_support_score'].mean(),
'sample_size': len(env_data),
'stress_social_support_ratio': env_data['stress_level'].mean() / env_data['social_support_score'].mean()
}
result = {
'analysis_type': '不同工作模式的压力水平与社交支持对比',
'detailed_stats': work_env_analysis.to_dict(),
'comparison': work_mode_comparison,
'insights': self._generate_work_env_insights(work_mode_comparison)
}
print("工作模式-压力社交支持分析完成")
return result
except Exception as e:
print(f"工作模式-压力社交支持分析失败: {e}")
return None
def analyze_employment_mental_indicators(self):
"""
2.3 不同雇佣状态的核心心理健康指标对比
Returns:
dict: 雇佣状态与心理健康指标对比分析结果
"""
try:
# 按雇佣状态分组分析核心心理健康指标
employment_mental = self.df.groupby('employment_status').agg({
'stress_level': ['mean', 'std'],
'depression_score': ['mean', 'std'],
'anxiety_score': ['mean', 'std']
}).round(2)
# 识别各雇佣状态的主要心理健康挑战
employment_challenges = {}
for status in self.df['employment_status'].unique():
status_data = self.df[self.df['employment_status'] == status]
avg_stress = status_data['stress_level'].mean()
avg_depression = status_data['depression_score'].mean()
avg_anxiety = status_data['anxiety_score'].mean()
# 找出最高的指标作为主要挑战
indicators = {
'stress': avg_stress,
'depression': avg_depression,
'anxiety': avg_anxiety
}
main_challenge = max(indicators, key=indicators.get)
employment_challenges[status] = {
'main_challenge': main_challenge,
'challenge_score': indicators[main_challenge],
'all_indicators': indicators
}
result = {
'analysis_type': '不同雇佣状态的核心心理健康指标对比',
'detailed_stats': employment_mental.to_dict(),
'main_challenges': employment_challenges,
'insights': self._generate_employment_mental_insights(employment_challenges)
}
print("雇佣状态-心理健康指标分析完成")
return result
except Exception as e:
print(f"雇佣状态-心理健康指标分析失败: {e}")
return None
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓