【有源码】基于大数据分析的心血管类疾病预诊与可视化大屏系统-基于spark+hadoop的心血管疾病大数据分析平台

#『AI先锋杯·14天征文挑战第5期』#

注意:该项目只展示部分功能,如需了解,文末咨询即可。

1 开发环境

发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm

2 系统设计

随着我国经济社会的快速发展和人口老龄化进程的加速,心血管疾病已成为威胁国民健康的重大公共卫生问题,其发病率和死亡率持续攀升。传统的心血管疾病分析方法主要依赖小样本的横断面研究,难以全面挖掘多维风险因素之间的复杂关联关系,也无法有效追踪疾病发展的动态变化轨迹。在大数据时代背景下,海量的健康体检数据为心血管疾病的精准分析和预防提供了前所未有的机遇,迫切需要构建一套基于大数据分析的心血管类疾病预诊与可视化大屏系统,以实现对心血管疾病风险因素的深度挖掘和科学评估。

基于大数据分析的心血管类疾病预诊与可视化大屏系统研究内容围绕心血管疾病大数据分析的四个核心维度展开,构建了完整的多层次、多角度分析框架。从宏观层面对研究人群进行全面的健康画像描绘,通过性别、年龄等基本信息统计,结合血压、血糖、血脂、尿酸等核心生理指标的集中趋势分析,全面评估人群整体健康状况;深入分析高血压、高血糖、血脂异常等"三高"疾病的患病率分布,并重点关注多重风险因素的共病情况,识别高危人群。聚焦尿酸这一重要的心血管疾病独立风险因素,从性别差异、年龄变化、BMI关联等多个维度进行专项深度分析,系统验证尿酸水平与心血管代谢性疾病的内在关联。运用先进的数据挖掘算法,构建多维风险因素关联分析体系,通过相关性热力图揭示各生理指标间的复杂关系,并基于年龄分层和BMI分层分析"三高"患病风险模式。充分利用纵向随访数据的优势,开展动态变化追踪分析,观察个体和群体健康指标的时间演变规律,探索疾病发展的动态预测模型。

1.人群基本画像统计功能:通过性别比例和年龄分布的可视化展示,为后续所有细分研究提供基准参考框架。
2."三高"患病率统计功能:分别计算高血压、高血糖、血脂异常的患病人数和患病率,评估心血管疾病风险的整体流行情况。
3.尿酸性别差异分析功能:比较男女两性的平均尿酸水平差异,揭示尿酸代谢的性别特异性规律。尿4.酸年龄趋势分析功能:分析尿酸水平在不同年龄段的变化模式,识别高尿酸血症的年龄相关风险。
5.核心生理指标集中趋势分析功能:计算血压、血糖、胆固醇、尿酸等关键指标的均值、中位数、标准差等统计量,快速掌握人群整体健康水平。
6.多重风险因素共病分析功能:统计同时患有多种疾病的人群分布,识别风险聚集效应最显著的高危群体。
7.尿酸与BMI关联分析功能:对比不同体重等级人群的尿酸水平,验证肥胖与高尿酸血症的关系。尿酸与"三高"关联分析功能:量化分析尿酸水平与心血管代谢性疾病的相关性强度。
8.生理指标相关性热力图功能:通过皮尔逊相关系数矩阵,直观展示各项生理指标间的关联强度和方向。
9.年龄分层患病风险分析功能:展示"三高"疾病患病率随年龄增长的变化趋势,强调早期预防的重要性。
10.BMI分层患病风险分析功能:证明体重控制对心血管疾病预防的直接作用效果。
11.肾功能关联分析功能:基于肾小球滤过率评估肾脏健康与整体代谢状态的密切联系。
12.随访指标演变趋势功能:追踪多次体检个体的关键指标变化轨迹,动态展示疾病风险发展过程。尿13.酸动态变化与疾病风险关联功能:探索尿酸变化率作为疾病预测指标的潜在价值。
14.首末次体检对比分析功能:从群体层面评估长期健康状况的整体变化趋势,为健康管理策略优化提供依据。

3 系统展示

3.1 功能展示视频

基于python和spark大数据心血管疾病数据分析系统源码 !!!请点击这里查看功能演示!!!

3.2 大屏页面

在这里插入图片描述
在这里插入图片描述

3.3 分析页面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4 基础页面

在这里插入图片描述
在这里插入图片描述

4 更多推荐

计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
计算机专业毕业设计选题深度剖析,掌握这些技巧,让你的选题轻松通过,文章附35个优质选题助你顺利通过开题!
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
基于大数据+机器学习的心理健康状态识别与分析系统
基于大数据的教育质量评估与学生表现可视化分析系统

5 部分功能代码

        # 4.2 尿酸动态变化与"三高"发生风险的关联
        print("\n=== 4.2 尿酸动态变化与'三高'发生风险的关联 ===")
                if '尿酸' in multiple_visits_df.columns:
            # 为每个个体计算尿酸变化量(末次 - 首次)
            uric_acid_changes = []
                        for patient_id in multiple_visits_ids:
                patient_data = multiple_visits_df[multiple_visits_df['体检号'] == patient_id].sort_values('体检次数')
                if len(patient_data) >= 2:
                    first_visit = patient_data.iloc[0]
                    last_visit = patient_data.iloc[-1]
                    
                    uric_change = last_visit['尿酸'] - first_visit['尿酸']
                    
                    change_record = {
                        '体检号': patient_id,
                        '尿酸变化量': uric_change,
                        '首次尿酸': first_visit['尿酸'],
                        '末次尿酸': last_visit['尿酸']
                    }
                                        # 添加疾病状态
                    diseases = ['高血压', '高血糖', '血脂异常']
                    for disease in diseases:
                        if disease in last_visit:
                            change_record[f'末次_{disease}'] = last_visit[disease]
                                        uric_acid_changes.append(change_record)
                        uric_changes_df = pd.DataFrame(uric_acid_changes)
            
            print(f"尿酸变化量统计:")
            print(f"  均值: {uric_changes_df['尿酸变化量'].mean():.2f}")
            print(f"  标准差: {uric_changes_df['尿酸变化量'].std():.2f}")
            print(f"  中位数: {uric_changes_df['尿酸变化量'].median():.2f}")
                        # 分析尿酸变化量与最终疾病状态的关系
            disease_uric_change_analysis = {}
            diseases = ['高血压', '高血糖', '血脂异常']
                        for disease in diseases:
                disease_col = f'末次_{disease}'
                if disease_col in uric_changes_df.columns:
                    # 按疾病状态分组分析尿酸变化
                    positive_changes = uric_changes_df[uric_changes_df[disease_col] == 1]['尿酸变化量']
                    negative_changes = uric_changes_df[uric_changes_df[disease_col] == 0]['尿酸变化量']
                                        if len(positive_changes) > 0 and len(negative_changes) > 0:
                        from scipy.stats import ttest_ind
                        t_stat, p_value = ttest_ind(positive_changes.dropna(), negative_changes.dropna())
                                                print(f"\n{disease}与尿酸变化量的关联:")
                        print(f"  患病组尿酸变化量: {positive_changes.mean():.2f} ± {positive_changes.std():.2f}")
                        print(f"  非患病组尿酸变化量: {negative_changes.mean():.2f} ± {negative_changes.std():.2f}")
                        print(f"  统计检验: t = {t_stat:.4f}, p = {p_value:.4f}")
                        
                        disease_uric_change_analysis[disease] = {
                            'positive_group_mean': positive_changes.mean(),
                            'negative_group_mean': negative_changes.mean(),
                            't_statistic': t_stat,
                            'p_value': p_value
                        }
                      results['uric_acid_change_analysis'] = disease_uric_change_analysis
                # 4.3 首次体检与末次体检健康指标对比分析
        print("\n=== 4.3 首次体检与末次体检健康指标对比分析 ===")
                # 获取每个人的首次和末次体检数据
        first_last_comparison = []
                for patient_id in multiple_visits_ids:
            patient_data = multiple_visits_df[multiple_visits_df['体检号'] == patient_id].sort_values('体检次数')
            if len(patient_data) >= 2:
                first_visit = patient_data.iloc[0]
                last_visit = patient_data.iloc[-1]
                               comparison_record = {'体检号': patient_id}
                               # 比较关键指标
                for indicator in available_indicators:
                    comparison_record[f'首次_{indicator}'] = first_visit[indicator]
                    comparison_record[f'末次_{indicator}'] = last_visit[indicator]
                    comparison_record[f'{indicator}_变化量'] = last_visit[indicator] - first_visit[indicator]
                                first_last_comparison.append(comparison_record)
                comparison_df = pd.DataFrame(first_last_comparison)
                # 计算群体层面的指标变化
        comparison_stats = {}
        for indicator in available_indicators:
            first_col = f'首次_{indicator}'
            last_col = f'末次_{indicator}'
            change_col = f'{indicator}_变化量'
                        if first_col in comparison_df.columns and last_col in comparison_df.columns:
                first_mean = comparison_df[first_col].mean()
                last_mean = comparison_df[last_col].mean()
                change_mean = comparison_df[change_col].mean()
                change_std = comparison_df[change_col].std()
                                # 配对t检验
                from scipy.stats import ttest_rel
                t_stat, p_value = ttest_rel(comparison_df[first_col].dropna(), comparison_df[last_col].dropna())
                                print(f"\n{indicator}首末次对比:")
                print(f"  首次均值: {first_mean:.2f}")
                print(f"  末次均值: {last_mean:.2f}")
                print(f"  变化量: {change_mean:.2f} ± {change_std:.2f}")
                print(f"  配对t检验: t = {t_stat:.4f}, p = {p_value:.4f}")
                                comparison_stats[indicator] = {
                    'first_mean': first_mean,
                    'last_mean': last_mean,
                    'change_mean': change_mean,
                    'change_std': change_std,
                    't_statistic': t_stat,
                    'p_value': p_value
                }

源码项目、定制开发、文档报告、PPT、代码答疑

希望和大家多多交流 ↓↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值