强连通缩点重构图,入度为0的点的个数即为第一问的答案,第二问的答案为入度为0的点的个数和出度为0的点的个数的最大值。证明见百度。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 110
#define pa pair<int,int>
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,dfn[N],low[N],dfnum=0,bel[N],scc=0,in[N],out[N];
bool inq[N],mp[N][N],mp1[N][N];
stack<int>qq;
void tarjan(int x){
dfn[x]=low[x]=++dfnum;qq.push(x);inq[x]=1;
for(int y=1;y<=n;++y){
if(!mp[x][y]) continue;
if(!dfn[y]) tarjan(y),low[x]=min(low[x],low[y]);
else if(inq[y]) low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x]){
++scc;while(1){
int y=qq.top();qq.pop();inq[y]=0;
bel[y]=scc;if(y==x) break;
}
}
}
void rebuild(){
for(int x=1;x<=n;++x)
for(int y=1;y<=n;++y){
if(!mp[x][y]) continue;
if(bel[x]!=bel[y]&&!mp1[bel[x]][bel[y]])
mp1[bel[x]][bel[y]]=1,in[bel[y]]++,out[bel[x]]++;
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=1;i<=n;++i){
while(1){
int x=read();if(!x) break;mp[i][x]=1;
}
}
for(int i=1;i<=n;++i) if(!dfn[i]) tarjan(i);
rebuild();int ans1=0,ans2=0;//ans1---入度为0的个数,ans2---出度为0的个数
for(int i=1;i<=scc;++i){
if(in[i]==0) ans1++;
if(out[i]==0) ans2++;
}
if(scc==1){puts("1");puts("0");return 0;}
printf("%d\n%d\n",ans1,max(ans1,ans2));
return 0;
}