uvalive6837 There is No Alternative(暴力+kruskal)

本文介绍了一种算法,用于找出在所有最小生成树中都存在的边。通过构造一棵最小生成树并逐条移除其上的边来检查是否仍能构成最小生成树,从而确定这些关键边。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一句话题意:求在原图的所有最小生成树中均出现的边。
orz Elijahqi直接秒掉此题。
先做出一颗最小生成树,然后枚举每一条生成树中的边,删掉它,看还能不能做出最小生成树。O(nm)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 510
#define M 50010
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,fa[N],good[N];
struct edge{
    int x,y,val;
}e[M];
inline bool cmp(edge x,edge y){return x.val<y.val;}
inline int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int kruskal(int bad){
    for(int i=1;i<=n;++i) fa[i]=i;int tot=0,mst=0;
    for(int i=1;i<=m;++i){
        if(i==bad) continue;
        int xx=find(e[i].x),yy=find(e[i].y);
        if(xx!=yy) fa[xx]=yy,mst+=e[i].val,++tot;
        if(tot==n-1) break;
    }if(tot!=n-1) return inf;return mst;
}
int main(){
//  freopen("a.in","r",stdin);
    while(~scanf("%d%d",&n,&m)){
        int ans1=0,ans=0,mst=0;
        for(int i=1;i<=m;++i) e[i].x=read(),e[i].y=read(),e[i].val=read();
        sort(e+1,e+m+1,cmp);for(int i=1;i<=n;++i) fa[i]=i;int tot=0;
        for(int i=1;i<=m;++i){
            int xx=find(e[i].x),yy=find(e[i].y);
            if(xx!=yy) fa[xx]=yy,good[++tot]=i,mst+=e[i].val;
            if(tot==n-1) break;
        }for(int i=1;i<=n-1;++i){
            if(kruskal(good[i])==mst) continue;
            ans1++;ans+=e[good[i]].val;
        }printf("%d %d\n",ans1,ans);
    }return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值