纹理分析是计算机视觉领域的重要研究方向之一,它涉及从图像或图像序列中提取和描述纹理特征的方法和技术。纹理是指在视觉上表现出来的物体的表面细节,它包含了物体的颜色、形状和结构等信息。纹理分析可以应用于许多领域,如图像识别、图像合成、目标检测和图像分割等。
在计算机视觉中,纹理可以通过不同的特征表示方法进行描述。下面将介绍一些常用的纹理特征提取方法,并给出相应的源代码示例。
- 灰度共生矩阵(Gray-Level Co-occurrence Matrix, GLCM)
灰度共生矩阵是一种常用的纹理特征提取方法。它通过统计图像中像素灰度级别之间的空间关系来描述纹理特征。以下是一个基于Python的计算灰度共生矩阵的示例代码:
import numpy as np
from skimage.feature import greycomatrix, greycoprops
def compute_glcm_features