华为诺亚提出VanillaNet主干网络:计算机视觉

华为诺亚推出VanillaNet,改进于YOLOV5和YOLOV8,旨在优化计算机视觉任务的性能和准确性。该网络采用卷积、批归一化层和全局平均池化,减少过拟合并加速训练。预训练权重支持迁移学习,为开发者提供新的目标检测解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

华为诺亚最近提出了一种名为VanillaNet的主干网络,该网络旨在改进目标检测算法YOLOV5和YOLOV8。VanillaNet采用了一系列创新技术,以提高计算机视觉任务的性能和准确性。本文将详细介绍VanillaNet的设计原理,并提供相应的源代码实例。

VanillaNet的设计灵感来自于YOLOV5和YOLOV8,这两个目标检测算法在计算机视觉领域取得了显著的成果。然而,VanillaNet在这些算法的基础上进行了改进,以提供更高的检测精度和更快的运行速度。

以下是VanillaNet的主要设计原理和源代码示例:

import torch
import torch.nn as nn
import torch.nn.functional as F

class VanillaNet
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值