算法练习帖--58--寻找数组的中心索引(Java)

该博客介绍了一个寻找数组中心索引的问题,即数组左右两边元素之和相等的索引。提供了两种解决方案,一种是通过前缀和逐步比较左右之和,另一种是直接利用数组总和与中位数的关系进行判断。示例展示了如何在Java中实现这一算法,并给出了测试用例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

寻找数组的中心索引

一、题目描述

给定一个整数类型的数组 nums,请编写一个能够返回数组 “中心索引” 的方法。

我们是这样定义数组 中心索引 的:数组中心索引的左侧所有元素相加的和等于右侧所有元素相加的和。

如果数组不存在中心索引,那么我们应该返回 -1。如果数组有多个中心索引,那么我们应该返回最靠近左边的那一个。
(题目来源:力扣(LeetCode))

示例 1:
输入:
nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
索引 3 (nums[3] = 6) 的左侧数之和 (1 + 7 + 3 = 11),与右侧数之和 (5 + 6 = 11) 相等。
同时, 3 也是第一个符合要求的中心索引。
示例 2:
输入:
nums = [1, 2, 3]
输出:-1
解释:
数组中不存在满足此条件的中心索引。
说明:
nums 的长度范围为 [0, 10000]。
任何一个 nums[i] 将会是一个范围在 [-1000, 1000]的整数。
二、解决方法

1. 前缀和

class Solution {
    public  int pivotIndex(int[] nums) {
        int length=nums.length;
        if(length==0){return -1;}
        //数组总和
        int sum= 0;
        for (int num : nums) {
            sum+=num;
        }
        //中位数左边之和
        int sumLeft=0;
        //中位数右边之和
        int sumRight=sum-nums[0];
        for (int i = 0; i < length; i++) {
            if(sumLeft==sumRight){//满足中位数左边之和等于中位数右边之和,返回当前下标
                return i;
            }else{
            	//否则向右继续递进
                sumLeft+=nums[i];
                if(i+1<length){
                    sumRight-=nums[i+1];
                }
            }
        }
        //未找到就返回-1
        return -1;
    }
}

优化:

class Solution {
    public  int pivotIndex(int[] nums) {
        //数组总和
        int sum= 0;
        for (int num : nums) {
            sum+=num;
        }
        //中位数左边之和
        int sumLeft=0;
        for (int i = 0; i < nums.length; i++) {
            //sum=中位数左边之和+中位数右边之和
            //根据特点:中位数左边之和=中位数右边之和+当前数=sum-当前数
            if(sumLeft*2==(sum-nums[i])){
                return i;
            }
            sumLeft+=nums[i];
        }
        //未找到就返回-1
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值