线性代数学习笔记11-3:总复习(习题)

Eg1 矩阵乘法和齐次方程

对于A=[v1v2v3]A=[\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3]A=[v1v2v3],有方程Ax=v1−v2+v3\mathbf A \mathbf{x}=\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3Ax=v1v2+v3

  • 求解方程Ax=v1−v2+v3\mathbf A \mathbf{x}=\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3Ax=v1v2+v3
    根据矩阵乘法,直接可得解为x=[1−11]x=\left[\begin{array}{c}1 \\-1 \\1\end{array}\right]x=111
  • v1−v2+v3=0\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3=0v1v2+v3=0,方程Ax=0\mathbf A \mathbf{x}=\mathbf 0Ax=0的解是否唯一?
    解是否唯一,看零空间的维数即可:根据v1−v2+v3=0\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3=0v1v2+v3=0,列线性相关,秩r<nr<nr<n,零空间维数n−r>0n-r>0nr>0,因此零空间有非零向量,Ax=0\mathbf A \mathbf{x}=\mathbf 0Ax=0有无穷个非零解;
    理解二:由于列线性相关,A\mathbf AA对应降维的变换,从而有一个空间被压缩到原点,Ax=0\mathbf A \mathbf{x}=\mathbf 0Ax=0有无穷个非零解;

Eg2.1 方程解的结构

对于m×nm\times nm×n的秩为rrr的矩阵,已知①方程Ax=[100]\boldsymbol{A x} =\left[\begin{array}{l}1 \\0 \\0\end{array}\right]Ax=100无解;②Ax=[010]\boldsymbol{A x}=\left[\begin{array}{l}0 \\1 \\0\end{array}\right]Ax=010有唯一解;

  • m,n,rm,n,rm,n,r的范围
    Ⅰ. 首先,矩阵乘法要求m=3m=3m=3
    Ⅱ. 由①,方程无解,必然意味着消元后出现“0=1”,也即行向量相关(必要不充分),则秩r<mr<mr<m
    理解二:方程消元后,若每行有一个主元(行满秩r=mr=mr=m/行向量线性无关),则方程必有解;
    而方程无解必然意味着消元后主元数<行数/行不满秩/行向量相关,即r<mr<mr<m

    Ⅲ. 由②,非齐次方程有唯一解,则齐次方程Ax=0\boldsymbol{A x}=0Ax=0有唯一零解(通解=特解+零空间),故零空间仅有零向量,零空间维度n−r=0n-r=0nr=0r=nr=nr=n
    理解二:A\boldsymbol AA不是降维的变换,则变换后基向量个数不变,r=nr=nr=n
    最终,r=n<m=3r=n<m=3r=n<m=3
  • 写出一个符合条件的A\boldsymbol AA
    A\boldsymbol AA秩为1的例子是A=[010]\boldsymbol{A} =\left[\begin{array}{l}0 \\1 \\0\end{array}\right]A=010A\boldsymbol AA秩为2的例子是A=[001001]\boldsymbol{A}=\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right]A=010001(保证方程①消元后第一行出现“0=1”,而方程②有解即可)
  • 求证:对于任意的c\mathbf cc,方程至少有ATy=c\mathbf A^T\mathbf y=\mathbf cATy=c一个解
    由于方程消元后,若每行有一个主元(行满秩r=mr=mr=m/行向量线性无关),则方程必有解;
    又因为已知r=nr=nr=n,故AT\mathbf A^TAT行满秩,满足上述条件
    另外关注解的个数: AT\mathbf A^TAT零空间(即A\mathbf AA左零空间)维数m−r>0m-r>0mr>0,方程ATy=c\mathbf A^T\mathbf y=\mathbf cATy=c有无穷个解

Eg2.2 ATA\mathbf A^T \mathbf AATA

对于上一题的A\boldsymbol AAr=n<m=3r=n<m=3r=n<m=3,判断下列命题是否成立
ATA\mathbf A^T \mathbf AATA可逆
AAT\mathbf A \mathbf A^TAAT正定
det(ATA)=det(AAT)det(\mathbf A^T \mathbf A)=det(\mathbf A \mathbf A^T)det(ATA)=det(AAT)

  • ①真命题。根据以前的知识,列满秩r=nr=nr=nATA\mathbf A^T \mathbf AATA必为正定矩阵,其行列式>0必可逆
  • ②假命题。两矩阵相乘,秩不会增大,因此mmm阶方阵AAT\mathbf A \mathbf A^TAAT的秩最多为r<mr<mr<m,不是列满秩,因此不可能为正定矩阵
  • ③假命题。由上,ATA\mathbf A^T \mathbf AATA可逆(行列式>0)而AAT\mathbf A \mathbf A^TAAT不可逆,故det(ATA)≠det(AAT)det(\mathbf A^T \mathbf A)\neq det(\mathbf A \mathbf A^T)det(ATA)=det(AAT)

注意,对于方阵A\mathbf AA和方阵B\mathbf BB,必然有det(AB)=det(A)det(B)=det(BA)det(\mathbf A \mathbf B)=det(\mathbf A)det(\mathbf B)=det(\mathbf B\mathbf A)det(AB)=det(A)det(B)=det(BA);对于非方阵则不成立

Eg3 Markov矩阵、差分方程与稳态

已知Markov矩阵A=[0.20.40.30.40.20.30.40.40.4]\boldsymbol{A} =\left[\begin{array}{ccc} 0.2 & 0.4 & 0.3 \\ 0.4 & 0.2 & 0.3 \\ 0.4 & 0.4 & 0.4 \end{array}\right]A=0.20.40.40.40.20.40.30.30.4

  • 求特征值
    ①通过观察,矩阵的列向量相关(列一+列二=2倍列三),则矩阵不可逆,必有特征值λ1=0\lambda_1=0λ1=0
    ②马尔可夫矩阵必然有特征值λ2=1\lambda_2=1λ2=1
    ③根据迹=对角元之和=特征值之和,最后一个特征值λ3=−0.2\lambda_3=-0.2λ3=0.2
  • 求差分方程uk=Aku0,u0=[0100]\mathbf{u}_{k}=\boldsymbol{A}^{k}\mathbf{u}_0,\mathbf{u}_0=\left[\begin{array}{c}0 \\10 \\0\end{array}\right]uk=Aku0u0=0100的稳态(即k→∞k\rightarrow\inftyk时的uk\mathbf{u}_{k}uk
    首先分析稳态中有哪些项:先将u0\mathbf{u}_0u0表示为特征向量的线性组合u0=c1x1+c2x2+c3x3\mathbf{u}_0=c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3u0=c1x1+c2x2+c3x3,那么uk=c1λ1kx1+c2λ2kx2+c3λ3kx3\mathbf{u}_{k} =c_{1} \lambda_{1}^{k} \mathbf{x}_{1}+c_{2} \lambda_{2}^{k} \mathbf{x}_{2}+c_{3} \lambda_{3}^{k} \mathbf{x}_{3}uk=c1λ1kx1+c2λ2kx2+c3λ3kx3,由于λ1=0,λ2=1,λ3=−0.2\lambda_1=0,\lambda_2=1,\lambda_3=-0.2λ1=0,λ2=1,λ3=0.2,最终的稳态只会剩下第二项,因此关注λ2=1\lambda_2=1λ2=1对应的特征向量即可
    求得特征向量x2=[334]\mathbf{x} 2 =\left[\begin{array}{l}3 \\3 \\4\end{array}\right]x2=334,故稳态uk=[334]\mathbf{u k} =\left[\begin{array}{l}3 \\3 \\4\end{array}\right]uk=334
    ps. 由于是Markov矩阵,问题可视为人口迁移问题,一开始有10个人,最终总共还是10个人,但分布不同

Eg4 最小二乘法

对于方程Ax=b\mathbf A\mathbf x=\mathbf bAx=b[101112][C^D^]=[341]\left[\begin{array}{ll}1 & 0 \\1 & 1 \\1 & 2\end{array}\right] \left[\begin{array}{l}\hat{C} \\\hat{D}\end{array}\right]= \left[\begin{array}{l}3 \\4 \\1\end{array}\right]111012[C^D^]=341
已知通过最小二乘法得出的“最优解”为[C^D^]=[11/3−1]\left[\begin{array}{c}\hat{C} \\\hat{D}\end{array}\right] =\left[\begin{array}{c}11 / 3 \\-1\end{array}\right][C^D^]=[11/31]

  • 求向量b=[341]\mathbf b=\left[\begin{array}{l}3 \\4 \\1\end{array}\right]b=341A\mathbf AA列空间上的投影p\mathbf pp
    根据最小二乘法的几何意义,其就是将b\mathbf bbA\mathbf AA列空间投影,然后对投影p\mathbf pp求解“最优解”;
    因此,带入[C^D^]=[11/3−1]\left[\begin{array}{c}\hat{C} \\\hat{D}\end{array}\right] =\left[\begin{array}{c}11 / 3 \\-1\end{array}\right][C^D^]=[11/31]得到投影p=[101112][C^D^]=[11/38/35/3]\mathbf p=\left[\begin{array}{ll}1 & 0 \\1 & 1 \\1 & 2\end{array}\right] \left[\begin{array}{l}\hat{C} \\\hat{D}\end{array}\right]=\left[\begin{array}{c}11 / 3 \\8 / 3 \\5 / 3\end{array}\right]p=111012[C^D^]=11/38/35/3

  • 将问题视为对三个数据点的直线拟合,画出对应的图像
    希望直线y=kx+by=kx+by=kx+b同时过三个点,方程写为:
    [101112][bk]=[341]\begin{bmatrix}1 & 0 \\1 & 1 \\1 & 2\end{bmatrix}\begin{bmatrix}b\\k\end{bmatrix}=\begin{bmatrix}3\\4\\1\end{bmatrix}111012[bk]=341
    对应的三个点为(0,3),(1,4),(2,1)(0,3),(1,4),(2,1)(0,3),(1,4),(2,1),而最“最优解”[11/3−1]\left[\begin{array}{c}11 / 3 \\-1\end{array}\right][11/31]给出终拟合得到的直线y=−x+11/3y=-x+11/3y=x+11/3
    在这里插入图片描述

  • 另求一个非零向量b\mathbf bb,使得Ax=b\mathbf A\mathbf x=\mathbf bAx=b最小二乘法的“最优解”为0\mathbf 00,即[C^D^]=[00]\left[\begin{array}{l}\hat{C} \\\hat{D}\end{array}\right] =\left[\begin{array}{l}0 \\0\end{array}\right][C^D^]=[00]
    根据最小二乘法的几何意义,先将b\mathbf bbA\mathbf AA列空间投影得到p\mathbf pp,那么“最优解”就是Ax^=p\mathbf A\mathbf {\hat x}=\mathbf pAx^=p的解
    仅当b\mathbf bb垂直/正交于A\mathbf AA列空间时,投影为p=0\mathbf p=\mathbf 0p=0,进而“最优解”为0\mathbf 00,从而得到b=[1−21]\mathbf{b}=\left[\begin{array}{c}1 \\-2 \\1\end{array}\right]b=121

Eg5 矩阵特性

求符合下列要求的2x2矩阵
①能将向量投影到a=[4−3]\mathbf{a}=\left[\begin{array}{c}4 \\-3\end{array}\right]a=[43]的投影矩阵
②具有特征值0,30,30,3和特征向量[12],[21]{\left[\begin{array}{l}1 \\2\end{array}\right] , \left[\begin{array}{l}2 \\1\end{array}\right]}[12][21]的矩阵
③不能被分解为A=BTB\boldsymbol A=\boldsymbol{B}^{T} \boldsymbol{B}A=BTB的矩阵
④特征向量正交的矩阵(除了对称阵)

  • ①投影矩阵P=A(ATA)−1AT=aaTaTa=……\mathbf P=\mathbf A(\mathbf A^T\mathbf A )^{-1}\mathbf A^T=\frac{\mathbf{a a}^{T}}{\mathbf{a}^{T} \mathbf{a}}=\ldots \ldotsP=A(ATA)1AT=aTaaaT=
  • ②根据相似对角化,可得到矩阵A=S−1ΛS=[1221][0003][1221]−1=……\boldsymbol{A}=\boldsymbol{S}^{-1} \boldsymbol{\Lambda} \boldsymbol{S}=\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]\left[\begin{array}{ll}0 & 0 \\0 & 3\end{array}\right] \left[\begin{array}{ll}1 & 2 \\2 & 1\end{array}\right]^{-1} =\ldots \ldotsA=S1ΛS=[1221][0003][1221]1=
  • BTB\boldsymbol{B}^{T} \boldsymbol{B}BTB至少为半正定矩阵,那么只要给出任意一个不对称的矩阵,即可满足“不能被分解为A=BTB\boldsymbol A=\boldsymbol{B}^{T} \boldsymbol{B}A=BTB
  • ④特征向量正交,几何上对应“旋转”的线性变换
    例如正交矩阵A=[cos−sinsincos]\boldsymbol{A}=\left[\begin{array}{ll} cos & -sin \\ sin & cos \end{array}\right]A=[cossinsincos](特征值为纯虚数,对应旋转,特征向量正交)
    又如反对称矩阵A=[01−10]\boldsymbol{A}=\left[\begin{array}{ll} 0 & 1 \\ -1 & 0 \end{array}\right]A=[0110]

Eg6 求矩阵的SVD分解

Eg 6.1

对于可逆矩阵A=[44−33]\boldsymbol{A}=\left[\begin{array}{cc}4 & 4 \\-3 & 3\end{array}\right]A=[4343]求SVD分解(可逆矩阵r=nr=nr=n,则ATA\boldsymbol{A}^{T} \boldsymbol{A}ATAAAT\boldsymbol{A}\boldsymbol{A}^{T}AAT为正定矩阵,特征值全为正,A\boldsymbol{A}A对应的奇异值全为正)

首先求正交矩阵V\boldsymbol{V}V和正交矩阵U\boldsymbol{U}U

  • 求正交矩阵V\boldsymbol{V}V
    计算ATA=[257725]\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{cc} 25 & 7 \\ 7 & 25 \end{array}\right]ATA=[257725],特征值λ1=σ12=32,λ2=σ22=18\lambda_1=\sigma_{1}^{2}=32, \lambda_2=\sigma_{2}^{2}=18λ1=σ12=32,λ2=σ22=18,特征向量v1=[1/21/2],v2=[1/2−1/2]\mathbf{v} 1=\left[\begin{array}{l}1 / \sqrt{2} \\1 / \sqrt{2}\end{array}\right], \mathbf{v} 2=\left[\begin{array}{r}1 / \sqrt{2} \\-1 / \sqrt{2}\end{array}\right]v1=[1/21/2],v2=[1/21/2](注意,由于U中需要标准正交基,需要将一般的特征向量[11],[1−1]{\left[\begin{array}{l}1 \\1\end{array}\right] , \left[\begin{array}{l}1 \\-1\end{array}\right]}[11],[11]标准化
    最终,V=[1/21/21/2−1/2]\boldsymbol{V}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]V=[1/21/21/21/2],Σ=[320018]\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sqrt{32} & 0 \\0 & \sqrt{18}\end{array}\right]Σ=[320018]
  • 求正交矩阵U\boldsymbol{U}U
    计算AAT=[320018]\boldsymbol{A} \boldsymbol{A}^{T}=\left[\begin{array}{cc}32 & 0 \\0 & 18\end{array}\right]AAT=[320018],特征值λ1=σ12=32,λ2=σ22=18\lambda_1=\sigma_{1}^{2}=32, \lambda_2=\sigma_{2}^{2}=18λ1=σ12=32,λ2=σ22=18,特征向量[10],[01]{\left[\begin{array}{l}1 \\0\end{array}\right] , \left[\begin{array}{l}0 \\1\end{array}\right]}[10],[01]
    AV=[3200−18]=UΣ\boldsymbol{A}\boldsymbol{V} =\left[\begin{array}{cc}\sqrt{32} & 0 \\0 & -\sqrt{18}\end{array}\right]=\boldsymbol{U} \boldsymbol{\Sigma}AV=[320018]=UΣ来帮助确定特征向量ui\mathbf{u}_iui所取的符号
    最后,U=[100−1]\boldsymbol{U}=\left[\begin{array}{cc}1 & 0 \\0& -1\end{array}\right]U=[1001](注意,不是[1001]\left[\begin{array}{cc}1 & 0 \\0& 1\end{array}\right][1001]

SVD分解结果:A=UΣVT,[44−33]=[100−1][320018][1/21/21/2−1/2]\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T},\quad\left[\begin{array}{cc}4 & 4 \\-3 & 3\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\0& -1\end{array}\right]\left[\begin{array}{cc}\sqrt{32} & 0 \\0 & \sqrt{18}\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]A=UΣVT[4343]=[1001][320018][1/21/21/21/2]

Eg 6.2

对于奇异矩阵A=[4386]\boldsymbol{A}=\left[\begin{array}{cc}4 & 3 \\8 & 6\end{array}\right]A=[4836]求SVD分解(奇异矩阵r<nr<nr<n,则ATA\boldsymbol{A}^{T} \boldsymbol{A}ATAAAT\boldsymbol{A}\boldsymbol{A}^{T}AAT为半正定矩阵)
与上面不同的是,这里A\boldsymbol{A}A为奇异矩阵,秩为1,导致了A\boldsymbol{A}A的行空间并不能张成整个R2\boldsymbol{R}^2R2空间,因此这里的SVD即AV=UΣ\boldsymbol{A}\boldsymbol{V} =\boldsymbol{U} \boldsymbol{\Sigma}AV=UΣV\boldsymbol{V}V中,还多了“零空间”的部分(如上面所述,这部分对应Σ\boldsymbol{\Sigma}Σ中的零元素)

由于是秩1矩阵,情况比较简单,我们不再用上面的通用方法求正交矩阵V\boldsymbol{V}V和正交矩阵U\boldsymbol{U}U,这里直接从矩阵的行空间和列空间来求解,同时有助于加深理解:
在这里插入图片描述

  • 这里行空间为一条直线,零空间则与之正交(垂直);列空间与左零空间同理
  • 根据前面所讲,我们要在整个R2\boldsymbol{R}^2R2空间(行空间+零空间)中找一组标准正交基,其被A\boldsymbol{A}A线性变换后,得到R2\boldsymbol{R}^2R2空间中的另一组标准正交基(对应到列空间+左零空间)
  • 如图,很容易得到行空间+零空间的标准正交基为v1=[4/53/5],v2=[3/5−4/5]\mathbf{v} 1=\left[\begin{array}{l}4/5 \\3/5\end{array}\right], \mathbf{v} 2=\left[\begin{array}{r}3/5\\-4/5\end{array}\right]v1=[4/53/5],v2=[3/54/5]
    列空间+左零空间的标准正交基为u1=15[12],u2=15[2−1]\mathbf{u} 1=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\2\end{array}\right], \mathbf{u} 2=\frac{1}{\sqrt{5}}\left[\begin{array}{r}2 \\-1\end{array}\right]u1=51[12],u2=51[21]
  • 由于有零空间,必有Av2=σ2u2\mathbf {A}\mathbf v_2=\sigma_2 \mathbf u_2Av2=σ2u2σ2=0\sigma_2=0σ2=0,则Σ=[σ1000]\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sigma_1 & 0 \\0 & 0\end{array}\right]Σ=[σ1000]
    通过AV=UΣ\boldsymbol{A}\boldsymbol{V} =\boldsymbol{U} \boldsymbol{\Sigma}AV=UΣ,一方面确定σ1\sigma_1σ1的值,另一方面确保向量vi\mathbf{v}_iviui\mathbf{u}_iui符号匹配
    得到σ1=125\sigma_1=\sqrt{125}σ1=125V=15[433−4]\boldsymbol{V}=\frac{1}{5}\left[\begin{array}{cc}4 &3 \\3& -4\end{array}\right]V=51[4334]U=15[122−1]\boldsymbol{U}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\2& -1\end{array}\right]U=51[1221]

最终,SVD分解结果:A=UΣVT,[4386]=15[122−1][125000]15[433−4]\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T},\quad\left[\begin{array}{cc}4 & 3 \\8 & 6\end{array}\right]= \frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\2& -1\end{array}\right] \left[\begin{array}{cc}\sqrt{125} & 0 \\0 & 0\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}4 &3 \\3& -4\end{array}\right]A=UΣVT[4836]=51[1221][125000]51[4334]

再次可见,A\boldsymbol{A}A的零空间向量(即V\boldsymbol{V}V中的v2=[3/5−4/5]\mathbf{v} 2=\left[\begin{array}{r}3/5\\-4/5\end{array}\right]v2=[3/54/5]),经过AV=UΣ\boldsymbol{A}\boldsymbol{V} =\boldsymbol{U} \boldsymbol{\Sigma}AV=UΣ后,对应于A\boldsymbol{A}A的左零空间向量(即U\boldsymbol{U}U中的u2=15[2−1]\mathbf{u} 2=\frac{1}{\sqrt{5}}\left[\begin{array}{r}2 \\-1\end{array}\right]u2=51[21]),也对应于Σ\boldsymbol{\Sigma}Σ中的σ2=0\sigma_2=0σ2=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值