完数(完备数、完美数)

完全数(Perfect number),又称完美数完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。

(1)所有的完全数都是三角形数。例如:6=1+2+3;28=1+2+3+...+6+7;496=1+2+3+...+30+31;8128=1+2+3…+126+127。

(2)所有的完全数的倒数都是调和数。例如:1/1+1/2+1/3+1/6=2;1/1+1/2+1/4+1/7+1/14+1/28=2;1/1+1/2+1/4+1/8+1/16+1/31+1/62+1/124+1/248+1/496=2。

(3)可以表示成连续奇立方数之和。除6以外的完全数,都可以表示成连续奇立方数之和,并规律式增加。例如:28=1³+3^3;496=1^3+3^3+5^3+7^3;8128=1^3+3^3+5^3+……+15^3;33550336=1^3+3^3+5^3+……+125^3+127^3。

(4)都可以表达为2的一些连续正整数次幂之和。不但如此,而且它们的数量为连续质数。例如:6=2^1+2^2;28=2^2+2^3+2^4;496=2^4+2^5+2^6+2^7+2^8;8128=2^6+2^7+2^8+2^9+2^10+2^11+2^12;33550336=2^12+2^13+……+2^24。

(5)完全数都是以6或8结尾。如果以8结尾,那么就肯定是以28结尾。(科学家仍未发现由其他数字结尾的完全数。)

(6)各位数字辗转式相加个位数是1。除6以外的完全数,把它的各位数字相加,直到变成个位数,那么这个个位数一定是1。例如:28:2+8=10,1+0=1;496:4+9+6=19,1+9=10,1+0=1;8128:8+1+2+8=19,1+9=10,1+0=1;33550336:3+3+5+5+0+3+6=28,2+8=10,1+0=1。

(7)它们被3除余1、被9除余1、1/2被27除余1。除6以外的完全数,它们被3除余1,9除余1,还有1/2被27除余1。28/3 商9余1,28/9 商3余1,28/27 商1余1。496/3 商165余1,496/9 商55余1。8128/3 商2709余1,8128/9 商903余1,8128/27 商301余1。


以上是我百度的,我所认为的完数就是你将一个数可以拆分成的两个数(除他本身之外)的所有情况相加的和与这个数相等就是完数。

打个比方:6是一个完数,他能拆成1*6=6,2*3=6,所以他的所有情况相加是1+2+3=6,所以是个完数

### 计算的C++实现 为了计算给定范围内(如1000以内)的,可以基于已有的逻辑稍作修改。以下是详细的解决方案: #### 修改后的代码 通过引入计器变量 `count` 来统计量,并最终输出该量。 ```cpp #include <iostream> using namespace std; int main() { int count = 0; // 统计的个 for (int i = 1; i <= 1000; i++) { // 遍历1到1000之间的所有整 int sum = 0; for (int j = 1; j < i; j++) { // 找出当前的所有因子 if (i % j == 0) { sum += j; // 累加因子 } } if (sum == i) { // 判断是否为 count++; // 如果是,则增加计器 } } cout << "1000以内的为:" << count << endl; // 输出的总个 return 0; } ``` 上述代码实现了对1至1000之间所有的查找,并记录其总[^1]。此方法的时间复杂度较高,因为它采用了双重循环结构来逐一验证每个字是否满足条件。 #### 使用STL优化代码 如果希望利用C++的标准模板库(STL),可以通过函式编程的方式简化部分逻辑。例如,使用 `std::accumulate` 和自定义谓词成因子求和的操作。 ```cpp #include <iostream> #include <vector> #include <numeric> // accumulate头文件 using namespace std; // 自定义函用于判断某个是否为另一个的因子 bool isFactor(int factor, int number) { return number % factor == 0; } int main() { int count = 0; // 器 for (int i = 1; i <= 1000; ++i) { vector<int> factors; // 存储当前的所有因子 for (int j = 1; j < i; ++j) { if (isFactor(j, i)) { factors.push_back(j); } } // 使用accumulate计算因子之和 int sum = accumulate(factors.begin(), factors.end(), 0); if (sum == i) { // 若因子和等于原则为 count++; } } cout << "1000以内的为:" << count << endl; return 0; } ``` 这段代码同样成了相同的功能,但借助了更现代的C++特性[^3]。它不仅提高了可读性,还展示了如何灵活运用STL工具解决实际问题。 #### 性能改进建议 对于更大的范围(如超过1000),原始算法可能变得效率低下。一种常见的优化策略是从平方根的角度减少不必要的迭代次。具体来说,在第二层循环中只需遍历到 `sqrt(i)` 即可找到所有的因组合[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火眼猊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值