Pandas库:(四)数组对象的增删改操作

目录

新增数据

concat追加数据(增加行数据)

insert插入数据(增加列数据)

删除数据

drop()删除指定行或列

drop_duplicates删除重复的行

修改数据

使用loc索引修改

数组对象.列名

replace替换

修改行列索引名


import pandas as pd

data1 = {
    '语文': [0, 19, 9, 28, 91, 56],
    '数学': [64, 81, 80, 17, 37, 52],
    '英语': [40, 25, 45, 58, 67, 57]
}

data2 = {
    '化学': [32, 38, 7, 12, 33, 28],
    '物理': [69, 43, 44, 62, 3, 67],
    '体育': [93, 7, 77, 95, 40, 89],
    '科目': ['科一', '科二', '科三', '科四', '科五', '科六']
}

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2, index=["a", "b", "c", "d", "e", "f"])

新增数据

concat追加数据(增加行数据)

在 Pandas 中,append() 方法用于将一个 DataFrame 或 Series 的数据追加到另一个 DataFrame 的末尾。从 Pandas 2.0.0 开始,append() 方法已被弃用,而是使用 pd.concat() 方法来实现相同的功能。

def concat(
    objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
    *,
    axis: Axis = 0,
    join: str = "outer",
    ignore_index: bool = False,
    keys: Iterable[Hashable] | None = None,
    levels=None,
    names: list[HashableT] | None = None,
    verify_integrity: bool = False,
    sort: bool = False,
    copy: bool | None = None,
) -> DataFrame | Series:

常用参数说明:

ignore_index=True :是否生成新的索引,新索引使用系统默认的整型索引。

axis=0:表示沿着指定的轴拼接(默认为0,表示行方向;1时表示为列方向)。

result1 = pd.concat([df1, df2], ignore_index=False)
result2 = pd.concat([df1, df2], axis=0)
print(result1)
print(result2)
insert插入数据(增加列数据)
    def insert(
        self,
        loc: int,
        column: Hashable,
        value: Scalar | AnyArrayLike,
        allow_duplicates: bool | lib.NoDefault = lib.no_default,
    ) -> None:

 参数说明:

  • loc: 插入位置的索引(从 0 开始)。例如,loc=0 表示在第一列插入,loc=1 表示在第二列插入,以此类推。

  • column: 新列的名称(字符串)。

  • value: 要插入的数据。可以是一个标量值、列表、NumPy 数组或 Series 对象。

  • allow_duplicates: 是否允许插入重复的列名。默认为 False,即不允许重复列名。

print(df1)
value = [80, 38, 70, 51, 33, 48]
df1.insert(loc=2, column='生物', value=value)
print(df1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值