从直线到神经网络:揭秘矩阵向量乘法

数学中最深刻的真理往往始于最简单的形式。一条直线方程蕴藏的智慧,如何演变为深度学习的基石?让我们从二维平面出发,穿越高维空间,揭示矩阵乘法如何驱动人工智能革命。

一、从二维直线到高维空间:线性代数的升维解读

1.1 熟悉的起点:y = ax + b

在数学启蒙阶段,我们学习的第一个函数y=ax+b像一把直尺:

  • 斜率a:控制直线倾斜程度
  • 截距b:决定与y轴的交点位置
  • 几何本质:一维输入到一维输出的线性映射

1.2 高维进化:Y = WX + B

当输入变为特征向量(如[身高,体重,年龄]),输出变为多维结果时,方程进化为:

Y = W * X + B
  • 参数解析

    • X:输入向量(n维特征)
    • W:权重矩阵(m×n维)
    • B:偏置向量(m维)
    • Y:输出向量(m维)
  • 几何意义突破

    • 不再是二维平面中的直线
    • 而是n维空间到m维空间的线性变换
    • 可分解为三大空间操作:
      1. 旋转(改变坐标轴方向)
      2. 缩放(调整特征权重)
      3. 平移(偏移坐标原点)

1.3 关键计算本质

每个输出分量都是输入的加权和:

y_i = w_{i1}x1 + w_{i2}x2 + ... + w_{in}xn + b_i

权重矩阵W的每一行都是一个特征提取器,混合原始特征调制出新特征。

💡 核心洞察:当m=1时,WX+B=0在n维空间定义(n-1)维超平面——这就是分类决策边界!

二、神经网络中的蜕变:线性与非线的共舞

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值