数学中最深刻的真理往往始于最简单的形式。一条直线方程蕴藏的智慧,如何演变为深度学习的基石?让我们从二维平面出发,穿越高维空间,揭示矩阵乘法如何驱动人工智能革命。
一、从二维直线到高维空间:线性代数的升维解读
1.1 熟悉的起点:y = ax + b
在数学启蒙阶段,我们学习的第一个函数y=ax+b像一把直尺:
- 斜率a:控制直线倾斜程度
- 截距b:决定与y轴的交点位置
- 几何本质:一维输入到一维输出的线性映射
1.2 高维进化:Y = WX + B
当输入变为特征向量(如[身高,体重,年龄]),输出变为多维结果时,方程进化为:
Y = W * X + B
-
参数解析:
X
:输入向量(n维特征)W
:权重矩阵(m×n维)B
:偏置向量(m维)Y
:输出向量(m维)
-
几何意义突破:
- 不再是二维平面中的直线
- 而是n维空间到m维空间的线性变换
- 可分解为三大空间操作:
- 旋转(改变坐标轴方向)
- 缩放(调整特征权重)
- 平移(偏移坐标原点)
1.3 关键计算本质
每个输出分量都是输入的加权和:
y_i = w_{i1}x1 + w_{i2}x2 + ... + w_{in}xn + b_i
权重矩阵W
的每一行都是一个特征提取器,混合原始特征调制出新特征。
💡 核心洞察:当m=1时,
WX+B=0
在n维空间定义(n-1)维超平面——这就是分类决策边界!