【PyTorch】从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

目录

专题一:深度卷积网络知识

专题二:PyTorch应用(遥感图像场景分类)

专题三:卷积神经网络实践与目标检测

        专题四:卷积神经网络的遥感影像目标检测任务案例

专题五:Transformer与遥感影像目标检测

专题六:Transformer的遥感影像目标检测任务案例 【DETR】

专题七:深度学习与遥感影像分割任务

专题八:深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

专题九:遥感影像问题探讨与深度学习优化


我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。

另一方面,随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。

  面对这些挑战,当前基于卷积神经网络的影像自动识别取得了令人印象深刻的结果。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。虽然以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。

专题一:深度卷积网络知识

1. 深度学习在遥感图像识别中的范式和问题

2. 深度学习的历史发展历程

3. 机器学习,深度学习等任务的基本处理流程

4. 卷积神经网络的基本原理

5. 卷积运算的原理和理解

6. 池化操作,全连接层,以及分类器的作用

7. BP反向传播算法的理解

8. CNN模型代码详解

9. 特征图,卷积核可视化分析

图片

图片

图片

专题二:PyTorch应用(遥感图像场景分类)

1. PyTorch简介

2. 动态计算图,静态计算图等机制

3. PyTorch的使用教程

4. PyTorch的学习案例

5. PyTorch的基本使用与API

6.PyTorch图像分类任务讲解

7.不同超参数,如初始化,学习率对结果的影响

8.使用PyTorch搭建神经网络并实现手写数字的分类

9.使用PyTorch修改模型并提升分类模型表现

图片

图片

图片

专题三:卷积神经网络实践与目标检测

1. 深度学习下的遥感影像目标检测基本知识

2. 目标检测数据集的图像和标签表示方式

3. 讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等

4. 无人机影像的植物识别和统计

5. 讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框

6. 架的演变和差异

7. 讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型

8. 现有检测模型「CNN系列」发展小结,包括OHEM、FCN、DCN等模型

图片

图片

专题四:卷积神经网络的遥感影像目标检测任务案例

【FasterRCNN】

1. 一份完整的Faster-RCNN 模型下实现遥感影像的目标检测

2. 讲解数据集的制作过程,包括数据的存储和处理

3. 数据集标签的制作

4. 模型的搭建,组合和训练

5. 检测任数据集在验证过程中的注意事项

图片

图片

专题五:Transformer与遥感影像目标检测

1. 从卷积运算到自注意力运算 self-attention

2. pytorch实现的自监督模块

3. 从Transformer到Vision Transformer (ViT)

4. ViT模型在遥感影像中的应用

图片

专题六:Transformer的遥感影像目标检测任务案例 【DETR】

1. Transformer下的新目标检测范式,DETR

2. 各类模型在遥感影像下的对比和调研

3. 一份完整的DETR模型下实现遥感影像的目标检测

4. 讲解针对检测任务的优化策略

图片

专题七:深度学习与遥感影像分割任务

1. 深度学习下的遥感影像分割任务的基本概念

2. 讲解FCN,SegNet,U-net等模型的差异

3. 分割模型的发展小结

4. 遥感影像分割任务和图像分割的差异

5. 在遥感影像分割任务中的注意事项

 

案例

数据集的准备和处理

遥感影像划分成小图像的策略

模型的构建和训练方法

验证集的使用过程中的注意事项

图片

图片

图片

专题八:深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

1. PointNet与PointNet++等模型的基本讲解

2. 点云数据的预处理和划分

3. 点云数据的语义分割

4. 点云数据的预测结果分析

图片

图片

图片

专题九:遥感影像问题探讨与深度学习优化

1. 现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型

2. 从模型演变中讲解实际训练模型的技巧

3. 讲解针对数据的优化策略

4. 讲解针对模型的优化策略

5. 讲解针对训练过程的优化策略

6. 讲解针对检测任务的优化策略

7. 讲解针对分割任务的优化策略

8. 提供一些常用的检测,分割数据集的标注工具

图片

图片

阅读原文

### 点云数据语义分割技术及实现方法 点云数据语义分割是将点云中的每个点分配到特定的类别中,这一过程需要考虑点云的空间分布、几何特征以及可能的颜色或强度信息。近年来,随着深度学习的发展,点云语义分割技术取得了显著进展。以下从几个方面详细说明点云语义分割的相关技术解决方案。 #### 1. 对比学习在点云语义分割中的应用 对比学习通过构建正负样本对来优化模型,这种方法在点云预训练中表现出色。例如,HybridCR 在转换后的点云对、局部几何对类别原型对上构建对比学习[^1]。此外,PointContrast Hou 等人的研究利用无标签对比学习进行预训练,这些模型具有很高的通用性,能够以少量注释完成语义分割任务[^1]。然而,仅依赖特征一致性可能不足以理解点云的复杂结构,尤其是在需要探索空间、颜色语义连续性时[^2]。 #### 2. 掩蔽建模在点云语义分割中的潜力 受图像视频表征学习中掩蔽建模的启发,研究人员试图将这一技术应用于点云语义分割。掩蔽建模能够增强上下文建模能力,从而更好地捕捉点云中的空间语义关系[^2]。然而,为三维点云设计有效的掩码策略仍然是一个挑战,因为点云数据通常具有不规则性稀疏性。因此,开发兼容的训练方案以充分利用有限的标记数据是当前研究的重点之一[^2]。 #### 3. 常见点云分割方法 传统点云分割方法包括随机抽样一致算法(RANSAC),它通过对点云数据进行随机采样来拟合模型,并剔除异常值[^3]。然而,这类方法通常适用于简单场景,在复杂场景下的表现有限。为了应对复杂场景,基于深度学习的方法逐渐成为主流。 #### 4. 深度学习驱动的点云语义分割 深度学习方法通过提取点云的几何特征上下文信息实现了更高的分割精度。常见的深度学习框架包括: - **PointNet/PointNet++**:通过直接处理点云数据并提取局部全局特征,PointNet 及其改进版 PointNet++ 成为点云处理的经典方法。 - **KPConv**:通过定义核点卷积操作,KPConv 能够高效地捕获点云的局部几何特征。 - **Sparse Convolution**:Sparse Convolution 方法通过稀疏张量表示点云数据,有效减少了计算开销。 - **Transformer-based 方法**:如 MILTrans,利用交叉注意力机制实现多实例学习,并结合对比损失进行优化。 #### 5. 实现方法示例 以下是一个简单的基于 PyTorch点云语义分割代码示例,使用 PointNet++ 作为基础模型: ```python import torch import torch.nn as nn from pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModule class PointNetPlusPlus(nn.Module): def __init__(self, num_classes): super(PointNetPlusPlus, self).__init__() self.SA_modules = nn.ModuleList() self.SA_modules.append(PointnetSAModule(npoint=512, radius=0.1, nsample=32, mlp=[3, 64, 64, 128])) self.SA_modules.append(PointnetSAModule(npoint=128, radius=0.2, nsample=64, mlp=[128, 128, 128, 256])) self.FP_modules = nn.ModuleList() self.FP_modules.append(PointnetFPModule(mlp=[256+128, 256, 256])) self.classifier = nn.Sequential( nn.Conv1d(256, 128, 1), nn.BatchNorm1d(128), nn.ReLU(), nn.Conv1d(128, num_classes, 1) ) def forward(self, point_cloud): l_xyz, l_features = [point_cloud], [None] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules)+1), -1): l_features[i-1] = self.FP_modules[i+len(self.FP_modules)](l_xyz[i-1], l_xyz[i], l_features[i-1], l_features[i]) return self.classifier(l_features[0]) # 初始化模型并测试 model = PointNetPlusPlus(num_classes=20) input_data = torch.randn(1, 3, 1024) # 输入点云数据 (batch_size, channels, num_points) output = model(input_data) print(output.shape) # 输出形状 (batch_size, num_classes, num_points) ``` #### 6. 应用领域 点云语义分割技术广泛应用于多个领域,包括但不限于: - **工业检测**:用于零件表面缺陷检测逆向工程。 - **自动驾驶**:通过激光雷达生成的点云数据进行环境感知物体识别。 - **遥感领域**:对地物进行分类识别。 - **整形医疗**:用于骨骼重建手术规划[^4]。 ### 总结 点云语义分割技术已经从传统的几何方法发展到基于深度学习的先进模型。对比学习掩蔽建模等新兴技术为解决标注数据不足的问题提供了新的思路,而 PointNet++、KPConv Transformer-based 方法则在实际应用中表现出色。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值