深度学习_循环神经网络_预测平安中国股价(文末附带数据集下载链接, 长期有效, 如果有大佬愿意帮忙, 我先在这磕一个,感谢)

简介: 
            使用循环神经网络RNN对股价进行预测, 
            也就是搭建循环神经网络对中国平安的收盘股价进行预测
深度学习训练流程
            1.数据集导入
                   
    2.数据预处理
    3.模型训练
        模型结构要求: 
            单层简单RNN, 神经元=5, 每次使用前八个预测第九个数据 
            输出层: 因为是对股价进行拟合预测, 使用线性回归
    4.预测和评估, 并可视化结果

=============================================================== 

代码实现(人工版) 

效果预览图

# ====================================================================
# 1.导入数据集
import pandas as pd
zgpa_data=pd.read_csv(r"C:\Users\鹰\Desktop\zgpa.csv")        # 格式: r+文件地址
zgpa_data.shape
# ============================================================================
# 2.数据预处理
# 2.1.数据基本处理, 数据很完善, 不需要进行缺失值/异常值处理
# 2.2.特征工程
# 2.2.1确定特征值和目标值
price=zgpa_data.loc[:,'close']
# 2.2.2特征预处理-对数据进行归一化, 可以加快函数收敛速度
price_norm=price/max(price)
# 2.2.3对处理后的结果进行可视化, 主要是确定一下处理的怎么样, 可视化嘛, 就是方便给人看的嘛
from matplotlib import pyplot as plt
price_fig=plt.figure(figsize=(4,3))
plt.plot(price)
plt.xlabel('time')
plt.ylabel('price')
plt.title('zgpa_price')
plt.show()

# 这一步是将之前归一化之后的数据进行分段截取, 每段截取8个数
# extract_data()函数的作用就是根据输入的数据:pri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秃头警告:赶紧睡觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值