简介:
使用循环神经网络RNN对股价进行预测,
也就是搭建循环神经网络对中国平安的收盘股价进行预测
深度学习训练流程
1.数据集导入
2.数据预处理
3.模型训练
模型结构要求:
单层简单RNN, 神经元=5, 每次使用前八个预测第九个数据
输出层: 因为是对股价进行拟合预测, 使用线性回归
4.预测和评估, 并可视化结果
===============================================================
代码实现(人工版)
效果预览图
# ====================================================================
# 1.导入数据集
import pandas as pd
zgpa_data=pd.read_csv(r"C:\Users\鹰\Desktop\zgpa.csv") # 格式: r+文件地址
zgpa_data.shape
# ============================================================================
# 2.数据预处理
# 2.1.数据基本处理, 数据很完善, 不需要进行缺失值/异常值处理
# 2.2.特征工程
# 2.2.1确定特征值和目标值
price=zgpa_data.loc[:,'close']
# 2.2.2特征预处理-对数据进行归一化, 可以加快函数收敛速度
price_norm=price/max(price)
# 2.2.3对处理后的结果进行可视化, 主要是确定一下处理的怎么样, 可视化嘛, 就是方便给人看的嘛
from matplotlib import pyplot as plt
price_fig=plt.figure(figsize=(4,3))
plt.plot(price)
plt.xlabel('time')
plt.ylabel('price')
plt.title('zgpa_price')
plt.show()
# 这一步是将之前归一化之后的数据进行分段截取, 每段截取8个数
# extract_data()函数的作用就是根据输入的数据:pri