最大子段和问题(3种方法)

1、暴力枚举(复杂度n方)(java版)
// 枚举(超时) 
import java.util.Scanner;
public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int[] arr = new int[n];
        int max = 0;
        int l = 0;
        int r = 0;
        for(int i = 0;i < n;i++){
            arr[i] = sc.nextInt();
        }
        for(int i = 0;i < n;i++){
            int sum = 0;
            for(int j = i;j < n;j++){
                sum += arr[j];
                if(sum > max){
                    max = sum;
                    l = i + 1;
                    r = j + 1;
                }
            }
        }
        System.out.print(max + "\n" + l + " " + r);
    }
}
2、分治递归(python版)
# 分治递归
n = int(input())
nums = list(map(int,input().split()))
def maxSum(left,right):
    if left == right:
        return (nums[left] if nums[left] > 0 else 0, left, left)
    else:
        center = (left + right) // 2
        leftSum, leftStart, leftEnd = maxSum(left, center)
        rightSum, rightStart, rightEnd = maxSum(center + 1, right)

        s1, lefts, maxLeft = 0, 0, center
        for i in range(center, left - 1, -1):
            lefts += nums[i]
            if lefts > s1:
                s1, maxLeft = lefts, i

        s2, rights, maxRight = 0, 0, center + 1
        for i in range(center + 1, right + 1):
            rights += nums[i]
            if rights > s2:
                s2, maxRight = rights, i

        sum = s1 + s2
        if sum >= leftSum and sum >= rightSum:
            return sum, maxLeft, maxRight
        elif leftSum < rightSum:
            return rightSum, rightStart, rightEnd
        else:
            return leftSum, leftStart, leftEnd
sum, left, right = maxSum(0, n-1)
print(f"{sum}\n{left + 1} {right + 1}")
3、动态规划(python版)
# 动态规划
n = int(input())
nums = list(map(int,input().split()))
def maxSum():
    sum, a, left, right, tempLeft = 0, 0, 0, 0, 0
    for i in range(0, n):
        a += nums[i]
        if a < 0:
            a, tempLeft = 0, i + 1
        if a > sum:
            sum,left, right = a, tempLeft, i
    return sum, left, right
sum, left, right = maxSum()
print(f"{sum}\n{left + 1} {right + 1}")
4、动态规划(java版)
// 动态规划
import java.util.Scanner;
public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int[] nums = new int[n];
        int sum = 0, a = 0, left = 0, right = 0, tempLeft = 0;
        for(int i = 0;i < n;i++){
            nums[i] = sc.nextInt();
            a += nums[i];
            if(a < 0){
                a = 0;
                tempLeft = i + 1;
            }
            if(a > sum){
                sum = a;
                left = tempLeft;
                right = i;
            }
        }
        System.out.println(sum + "\n" + (left + 1) + " " + (right + 1));
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科大JR.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值