用Matlab实现语音情感识别技术
语音情感识别技术是一种通过分析语音信号中蕴含的情感信息,来推断人们情感状态并做出响应的技术。本文将介绍如何用Matlab实现一种简单的语音情感识别模型。
首先,我们需要准备一个语音信号数据集。这个数据集可以包含多个不同说话者的录音,每个录音都有相应的情感标签(例如高兴、悲伤等)。在本文中我们使用一个包含120个样本的简单数据集。
接着,我们需要对这些语音信号进行特征提取。在本文中我们使用MFCC(Mel频率倒谱系数)作为特征向量,代码如下:
function [mfccs] = get_mfccs(x, fs)
% x: 语音信号
% fs: 采样率
% 分帧
frame_length = 0.025; % 帧长
frame_shift = 0.01; % 帧移
frame_size = round(frame_length * fs);
frame_step = round(frame_shift * fs);
frames = buffer(x, frame_size, frame_size - frame_step);
% 加窗
w = hamming(frame_size);
for i = 1:size(frames,2)
frames(:,i) = frames(:,i) .* w;
end
% 获取功率谱
pspec = abs(fft(frames)).^2 / frame_size;
pspec = pspec(1:frame_size/2+1,:);
%