!!逆元详解!!————Luogu P3811 【模板】乘法逆元 【逆元】(未完成)

这篇博客详细介绍了模运算中的逆元概念,包括逆元的定义,并提供了三种求解逆元的方法:扩展欧几里得算法、费马小定理和线性求逆元。博主特别指出在Luogu P3811题目中,线性求逆元是唯一能在时限内通过的解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定 n , p n,p n,p 1 ∼ n 1\sim n 1n 中所有整数在模 p p p 意义下的乘法逆元。

思路

定义

首先看逆元的定义:
a ∗ x ≡ 1 ( m o d b ) a*x\equiv1 \pmod {b} ax1(modb),且 a a a b b b 互质,
那么我们就能定义: x x x a a a 的逆元,记为 a − 1 a^{-1} a1
所以我们也可以称 x x x a a a   m o d   b \bmod b modb 意义下的倒数。

逆元有很多应用,比如在模意义下的乘法中。
对于 a b ( m o d p ) \displaystyle\frac{a}{b} \pmod {p} ba(modp) ,我们就可以求出 b b b   m o d   p \bmod {p} modp 下的逆元,然后乘上 a a a ,再   m o d   p \bmod {p} modp,就是这个分数的值了。

那怎么求逆元呢?
求逆元呢,有三种做法,我会一一解释。


求法

1.exgcd求逆元

……

exgcd求逆元代码
//已卡常,已开O2
#include<iostream>
#include<cstdio>
using namespace std;
int n,p,x,y;
inline void exgcd(int a,int b,int &x,int &y)
{
	if(b==0)
	 {
	 	x=1;
	 	y=0;
	 	return;
	 }
	exgcd(b,a%b,x,y);
    int t=x;
	x=y;
	y=t-(a/b)*y;
}
inline void print(int x)
{
    if(x<0)
     {
    	putchar('-');
    	x=-x;
     }
    if(x>9)
      print(x/10);
    putchar(x%10+'0');
}
int main()
{
	scanf("%d%d",&n,&p);
	for(register int i=1; i<=n; ++i)
	 {
	 	exgcd(i,p,x,y);
	 	x=(x%p+p)%p;
	 	print(x);
	 	puts("");
	 }
	return 0;
}

2.费马小定理求逆元

……

3.线性求逆元

线性求逆元呢,其实不需要用到什么算法或定理,直接推式子就可以了。


本题只有线性求逆元能AC,其余两种卡常也只能跑到550ms。(时限500ms)。

线性求逆元代码
#include<iostream>
#include<cstdio>
using namespace std;
long long n,p,inv[30000010];
int main()
{
   scanf("%lld%lld",&n,&p);
   printf("1\n");
   inv[1]=1;
   for(long long i=2; i<=n; i++)
    {
       inv[i]=p-(p/i)*inv[p%i]%p;
	   printf("%lld\n",inv[i]);
    } 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值