题目
思路
考虑这样一个问题:
- 有一些操作,每个操作只在 l∼rl\sim rl∼r 的时间段内有效。
- 有一些询问,每个询问某一个时间点所有操作的贡献。
对于这样的询问,我们可以离线后在时间轴上建一棵线段树,这样对于每个操作,相当于在线段树上进行区间操作。
遍历整颗线段树,到达每个节点时执行相应的操作,然后继续向下递归,到达叶子节点时统计贡献,回溯时撤销操作即可。
这样的思想被称为线段树分治,可以在低时间复杂度内解决一类在线算法并不优秀的问题。
对于此题
首先,图是二分图的充要条件是不存在奇环,这个可以用扩展域并查集轻松维护。
按照上述思想建一棵线段树,对于每条边,将它按照线段树区间操作的方式划分成 O(logk)\mathcal O(\log k)O(logk) 段,用 vector 挂在线段树的节点上。
遍历时,从根节点出发,每到一个节点,将挂在该节点上的所有边合并,然后递归处理左儿子和右儿子。如果发现有某条边合并会出现奇环,那么当前线段树节点所对应的时间区间都不会形成二分图。
当到达叶子节点时,如果合并了所有挂在当前节点上的边,依旧满足二分图的性质,那么可以直接输出 Yes。
回溯时,由于并查集不支持删边,我们可以使用可撤销并查集,即用一个栈记录下所有对并查集的操作。由于可撤销,因此不能路径压缩,为保证复杂度,必须按秩合并。
代码
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int n,m,k,x,y,l,r,fa[2000010],h[2000010],top;
vector<int>q[2000010];
struct stu
{
int x,y,add;
}st[2000010];
struct stu3
{
int x,y;
}e[2000010];
int find(int faa)
{
while(fa[faa]!=faa)
faa=fa[faa];
return fa[faa];
}
void merge(int x,int y)
{
int fx=find(x),fy=find(y);
if(h[fx]>h[fy])
swap(fx,fy);
st[++top]=(stu){fx,fy,h[fx]==h[fy]};
fa[fx]=fy;
if(h[fx]==h[fy])
h[fy]++;
}
void solve(int k,int l,int r)
{
int bj=1,ltop=top;
for(int i=0; i<q[k].size(); i++)
{
int fx=find(e[q[k].at(i)].x),fy=find(e[q[k].at(i)].y);
if(fx==fy)
{
for(int j=l; j<=r; j++)
printf("No\n");
bj=0;
break;
}
merge(e[q[k].at(i)].x,e[q[k].at(i)].y+n);
merge(e[q[k].at(i)].y,e[q[k].at(i)].x+n);
}
if(bj)
{
int mid=(l+r)/2;
if(l==r)
printf("Yes\n");
else
{
solve(k*2,l,mid);
solve(k*2+1,mid+1,r);
}
}
while(top>ltop)
{
h[fa[st[top].x]]-=st[top].add;
fa[st[top].x]=st[top].x;
top--;
}
return;
}
void insert(int k,int l,int r,int x,int y,int d)
{
if(x<=l&&r<=y)
{
q[k].push_back(d);
return;
}
int mid=(l+r)/2;
if(x<=mid)
insert(k*2,l,mid,x,y,d);
if(y>mid)
insert(k*2+1,mid+1,r,x,y,d);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1; i<=m; i++)
{
scanf("%d%d%d%d",&e[i].x,&e[i].y,&l,&r);
l++,insert(1,1,k,l,r,i);
}
for(int i=1; i<=2*n; i++)
fa[i]=i,h[i]=1;
solve(1,1,k);
return 0;
}