本文章记录通过矩阵最小二乘法,求解二元方程组的线性回归。
假设,二维平面中有三个坐标(1,1)、(2,2)、(3,2),很显然该三个坐标点不是共线的,如何拟合出一条直线使其为最优直线。

将三点的坐标分别带入,可得到如下形式:
{
C+D=1C+2D=2C+3D=2(1) \begin{cases} C + D = 1\\ C + 2D = 2\\ C + 3D = 2\\ \end{cases} \tag{1} ⎩
⎨
⎧C+D=1C+2D=2C+3D=2(1)
显然方程组无解,因为三点不共线。
令:
A=[a1a2]=[111213]A = \left[ \begin{matrix} a1 & a2 \end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{matrix} \right] A=[a1a2]=
111123
b=[122]b = \left[ \begin{matrix} 1 \\ 2 \\ 2 \end{matrix} \right] b=
122