最小二乘法求解二元线性回归问题

本文章记录通过矩阵最小二乘法,求解二元方程组的线性回归。

假设,二维平面中有三个坐标(1,1)、(2,2)、(3,2),很显然该三个坐标点不是共线的,如何拟合出一条直线使其为最优直线。

如上图所示,根据三个点,求拟合直线 $$ y = C + Dt $$

将三点的坐标分别带入,可得到如下形式:
{ C+D=1C+2D=2C+3D=2(1) \begin{cases} C + D = 1\\ C + 2D = 2\\ C + 3D = 2\\ \end{cases} \tag{1} C+D=1C+2D=2C+3D=2(1)

显然方程组无解,因为三点不共线。

令:
A=[a1a2]=[111213]A = \left[ \begin{matrix} a1 & a2 \end{matrix} \right] = \left[ \begin{matrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{matrix} \right] A=[a1a2]= 111123
b=[122]b = \left[ \begin{matrix} 1 \\ 2 \\ 2 \end{matrix} \right] b= 122

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值