主要介绍一维随机变量期望和方差、二维随机变量期望和方差、以及协方差相关公式,及推导。
一维随机变量
以一个抛硬币的场景作为例子,如下:
抛掷两枚均匀硬币,如果两枚都是正面向上,则赢得2元,否则就输掉1元。某人进行了 100次,结果如下表,求赢钱的平均值和方差
HH | HT | TH | TT |
---|---|---|---|
30 | 20 | 30 | 20 |
又有,分布律:
其中随机变量对应示例中的赢钱金额
随机变量 XXX | 2 | -1 |
---|---|---|
频率 fff | 0.3 | 0.7 |
概率 ppp | 0.25 | 0.75 |
1. 期望与方差
平均值
记为 xˉ\bar{x}xˉ
xˉ=1n∑i=1nxi=∑i=1nxi∗fi=2∗0.3+(−1)∗0.7=−0.1\begin{aligned}
\bar{x}&= \frac{1}{n}\sum_{i=1}^nx_i = \sum_{i=1}^nx_i*f_i \\
&= 2*0.3+(-1)*0.7 \\
&= -0.1
\end{aligned}xˉ=n1i=1∑nxi=i=1∑nxi∗fi=2∗0.3+(−1)∗0.7=−0.1
随机变量(赢钱金额)的数学期望
为:
E(x)=∑i=1nxi∗pi=2∗0.25+(−1)∗0.75=−0.25\begin{aligned}
E(x) &= \sum_{i=1}^nx_i*p_i \\
&= 2*0.25 + (-1)*0.75=-0.25
\end{aligned}E(x)=i=1∑nxi∗pi=2∗0.25+(−1)∗0.75=−0.25
平均值:通过频率 fff 计算出来的均值。
数学期望:通过概率 ppp 计算出来的均值。
对于均值
, 方差为
s2=1n∑i=1n(xi−xˉ)2
s^2 = \frac{1}{n}\sum_{i=1}^n(x_i - \bar{x})^2
s2=n1i=1∑n(xi−xˉ)2
计算结果 s2=(2+0.1)2∗0.3+(−1+0.1)2∗0.7=1.89s^2=(2+0.1)^2*0.3 + (-1+0.1)^2*0.7=1.89s2=(2+0.1)2∗0.3+(−1+0.1)2∗0.7=1.89
对于期望
, 方差可以理解为上述中的均值改为期望,频率改为概率。(实际样本方差求平均时,分母是 n-1)
由此基础,我们引出方差的公式
:
D(X)=E(X−E(X))2 D(X) = E(X - E(X))^2 D(X)=E(X−E(X))2
数学期望和方差(标准差)分别反映了随机变量分布的中心位置与集散程度。
2. 期望与方差性质
常数 c 的期望和方差:
E(c)=∑i=1nc∗pi=c∑i=1npi=cE(c) = \sum_{i=1}^n c*p_i=c\sum_{i=1}^np_i=cE(c)=∑i=1nc∗pi=c∑i=1npi=c
D(c)=E(c−E(c))2=E(c−c)2=0D(c)=E(c - E(c))^2 = E(c - c)^2=0D(c)=E(c−E(c))2=E(c−c)2=0
常数与随机变量的乘积:
E(cX)=∑i=1nc∗xi∗pi=cE(X)E(cX)=\sum_{i=1}^nc*x_i*p_i=cE(X)E(cX)=∑i=1nc∗xi∗pi=cE(X)
D(cX)=E(cX−E(cX))2=c2E(X−E(X))2=c2D(X)D(cX)=E(cX - E(cX))^2=c^2E(X-E(X))^2=c^2D(X)D(cX)=E(cX−E(cX))2=c2E(X−E(X))2=c2D(X)
随机变量和:
E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)
D(X+Y)=D(X)+D(Y)\color{red}{D(X+Y)=D(X)+D(Y)}D(X+Y)=D(X)+D(Y)
X、Y相互独立时, 红色亮显公式D(X+Y) 才成立。
方差的计算公式:
D(X)=E(X−E(X))2=E[X2−2XE(X)+(E(X))2]=E(X2)−E(2XE(X))+E[(E(X))2]=E(X2)−2(E(X))2+(E(X))2=E(X2)−(E(X))2\begin{aligned}
D(X) &=E(X-E(X))^2 \\
&= E[X^2 - 2XE(X) + (E(X))^2] \\
&=E(X^2) - E(2XE(X)) + E[(E(X))^2] \\
&= E(X^2) - 2(E(X))^2 + (E(X))^2 \\
&= E(X^2) - (E(X))^2
\end{aligned}D(X)=E(X−E(X))2=E[X2−2XE(X)+(E(X))2]=E(X2)−E(2XE(X))+E[(E(X))2]=E(X2)−2(E(X))2+(E(X))2=E(X2)−(E(X))2
二维随机变量
1. 期望
二维离散型随机变量 (X, Y) 的分布律:
P{X=xi,Y=yj}=piji,j=1,2,...P\{X=x_i, Y=y_j\}=p_{ij} \quad i,j=1,2,...P{X=xi,Y=yj}=piji,j=1,2,...
二维连续型随机变量 (X, Y) 的概率密度函数f(x,y)f(x, y)f(x,y)
假设二维随机变量的函数为 g(X,Y)g(X, Y)g(X,Y),则:
离散场景
:
E(g(X,Y))=∑i=0n∑j=0ng(xi,yj)pijE(g(X, Y))= {\color{blue}{\sum_{i=0}^n \sum_{j=0}^n}}{\color{purple}{g(x_i, y_j)}}{\color{green}{p_{ij}}}E(g(X,Y))=i=0∑nj=0∑ng(xi,yj)pij
连续场景
:
E(g(X,Y))=∫−∞+∞∫−∞+∞ g(x,y) f(x,y) dx dyE(g(X, Y)) ={\color{blue}{\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}}} \, {\color{purple}{g(x, y)}} \, {\color{green}{f(x, y) \, dx \, dy}}E(g(X,Y))=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy
无论离散还是连续,都可以理解为三方部分:求和、函数值、概率,的乘积。
2. 期望的性质
例如:g(X,Y)=X+Yg(X, Y) = X + Yg(X,Y)=X+Y
1) 和的期望等于期望的和
E(X+Y)=∫−∞+∞∫−∞+∞(x+y)f(x,y)dxdy=∫−∞+∞x(∫−∞+∞f(x,y)dy)dx+∫−∞+∞y(∫−∞+∞f(x,y)dx)dy=∫−∞+∞xfXdx+∫−∞+∞yfYdy=E(X)+E(Y)\begin{aligned}
E(X + Y) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} (x+y)f(x, y)dxdy \\
&=\int_{-\infty}^{+\infty}x(\int_{-\infty}^{+\infty}f(x, y)dy)dx + \int_{-\infty}^{+\infty}y(\int_{-\infty}^{+\infty}f(x, y)dx)dy \\
&=\int_{-\infty}^{+\infty}xf_Xdx + \int_{-\infty}^{+\infty}yf_Ydy \\
&=E(X) + E(Y)
\end{aligned}E(X+Y)=∫−∞+∞∫−∞+∞(x+y)f(x,y)dxdy=∫−∞+∞x(∫−∞+∞f(x,y)dy)dx+∫−∞+∞y(∫−∞+∞f(x,y)dx)dy=∫−∞+∞xfXdx+∫−∞+∞yfYdy=E(X)+E(Y)
推广:
E(∑k=1nXk)=∑k=1nE(Xk)E(\sum_{k=1}^nX_k) = \sum_{k=1}^nE(X_k)E(∑k=1nXk)=∑k=1nE(Xk)
2) 若随机变量X、Y相互独立,则 E(XY) = E(X)E(Y)
E(XY)=∫−∞+∞∫−∞+∞xyf(x,y)dxdy=∫−∞+∞∫−∞+∞xyfX(x)fY(y)dxdy=∫−∞+∞xfX(x)dx⋅∫−∞+∞yfY(y)dy=E(X)⋅E(Y)\begin{aligned}
E(XY) &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xy{\color{red}{f(x,y)}}dxdy \\
&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xy{\color{red}{f_X(x)f_Y(y)}}dxdy \\
&=\int_{-\infty}^{+\infty}xf_X(x)dx \cdot \int_{-\infty}^{+\infty}yf_Y(y)dy \\
&= E(X) \cdot E(Y)
\end{aligned}E(XY)=∫−∞+∞∫−∞+∞xyf(x,y)dxdy=∫−∞+∞∫−∞+∞xyfX(x)fY(y)dxdy=∫−∞+∞xfX(x)dx⋅∫−∞+∞yfY(y)dy=E(X)⋅E(Y)
其中绿色部分是有变量 X、Y相互独立得出
3. 协方差
例如:g(X,Y)=X+Yg(X, Y) = X + Yg(X,Y)=X+Y
D(X+Y)=E(X+Y)2−(E(X+Y))2=E(X+Y)2−(E(X)+E(Y))2=E(X2)+E(Y2)+2E(XY)−(E(X))2−(E(Y))2−2E(X)E(Y)=D(X)+D(Y)+2(E(XY)−E(X)E(Y))\begin{aligned} D(X+Y) &= E(X+Y)^2 - (E(X+Y))^2 \\ &= E(X+Y)^2 - (E(X) + E(Y))^2 \\ &=E(X^2) + E(Y^2) + 2E(XY) - (E(X))^2 - (E(Y))^2 - 2 E(X)E(Y) \\ &=D(X) + D(Y) + 2({\color{blue}{E(XY) - E(X)E(Y)}}) \end{aligned}D(X+Y)=E(X+Y)2−(E(X+Y))2=E(X+Y)2−(E(X)+E(Y))2=E(X2)+E(Y2)+2E(XY)−(E(X))2−(E(Y))2−2E(X)E(Y)=D(X)+D(Y)+2(E(XY)−E(X)E(Y))
定义上述式子中蓝色部分为协方差,即
Cov(X,Y)=E(XY)−E(X)E(Y)Cov(X, Y) = E(XY) - E(X)E(Y)Cov(X,Y)=E(XY)−E(X)E(Y)
等价表达式:
Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}Cov(X, Y) = E\{[X - E(X)][Y-E(Y)]\}Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}
4. 协方差性质
性质1
若随机变量X、Y相互独立,则 Cov(X,Y)=0Cov(X, Y) = 0Cov(X,Y)=0,反之不然
性质2
D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X+Y) = D(X) + D(Y) + 2Cov(X, Y)D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
性质3
Cov(X,X)=D(X)Cov(X, X)=D(X)Cov(X,X)=D(X)
性质4
Cov(aX,bX)=abCov(X,Y)Cov(aX, bX)=abCov(X, Y)Cov(aX,bX)=abCov(X,Y)
性质5
Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)Cov(X_1 + X_2, Y)=Cov(X_1, Y) + Cov(X_2, Y)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
5. 标准化
随机变量 X,Y 标准化:
X∗=X−E(X)D(X)=X−μ1σ1X^* = \frac{X-E(X)}{\sqrt{D(X)}}=\frac{X-\mu_1}{\sigma_1}X∗=D(X)X−E(X)=σ1X−μ1
Y∗=Y−E(Y)D(Y)=Y−μ2σ2Y^* = \frac{Y-E(Y)}{\sqrt{D(Y)}}=\frac{Y-\mu_2}{\sigma_2}Y∗=D(Y)Y−E(Y)=σ2Y−μ2
可以推出:
E(X∗)=E(X−μ1σ1)=1σ1(E(X)−μ1)=0E(X^*) = E(\frac{X-\mu_1}{\sigma_1})=\frac{1}{\sigma_1}(E(X)-\mu_1)=0E(X∗)=E(σ1X−μ1)=σ11(E(X)−μ1)=0
D(X∗)=D(X−μ1σ1)=1σ12D(X)=1D(X^*) = D(\frac{X-\mu_1}{\sigma_1})=\frac{1}{\sigma_1^2}D(X)=1D(X∗)=D(σ1X−μ1)=σ121D(X)=1
可以推出:任意随机变量经过标准化后其期望为0,方差为1
随机变量 X,Y 的相关系数:
Cov(X∗,Y∗)=Cov(X−μ1σ1,Y−μ2σ2)=1σ1σ2⋅Cov(X,Y)=Cov(X,Y)D(X)⋅D(Y)\begin{aligned}
Cov(X^*, Y^*) &=Cov(\frac{X-\mu_1}{\sigma_1}, \frac{Y-\mu_2}{\sigma_2}) \\
&= \frac{1}{\sigma_1\sigma_2} \cdot Cov(X, Y) \\
&= {\color{blue}{\frac{Cov(X, Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}}}
\end{aligned}Cov(X∗,Y∗)=Cov(σ1X−μ1,σ2Y−μ2)=σ1σ21⋅Cov(X,Y)=D(X)⋅D(Y)Cov(X,Y)
上述式子中的蓝色部分定义为相关系数
,即
ρxy=Cov(X,Y)D(X)⋅D(Y)\rho_{xy}=\frac{Cov(X, Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}ρxy=D(X)⋅D(Y)Cov(X,Y)
其中,相关系数恒在 -1 到 1 之间。
矩估计
样本矩(频率分布) | 总体矩(概率分布) | |
---|---|---|
k阶矩 | αk=1n∑i=1nxik\alpha_k=\frac{1}{n}\sum_{i=1}^nx_i^kαk=n1∑i=1nxik | E(Xk)=AkE(X^k)=A_kE(Xk)=Ak |
样本均值 | xˉ=α1\bar{x}=\alpha_1xˉ=α1 | E(X)=A1E(X)=A_1E(X)=A1 |
样本方差 | s2=1n−1(∑i=1nxi2−nxˉ2)=nn−1(α2−α12)s^2=\frac{1}{n-1}(\sum_{i=1}^nx_i^2 - n\bar{x}^2) =\frac{n}{n-1}(\alpha_2 - \alpha_1^2)s2=n−11(∑i=1nxi2−nxˉ2)=n−1n(α2−α12) | D(X)=E(X2)−(E(X))2=A2−A12D(X)=E(X^2)-(E(X))^2=A_2 - A_1^2D(X)=E(X2)−(E(X))2=A2−A12 |
补充:
一维随机样本方差公式
s2=∑i=1n(xi−xˉ)2n−1
s^2 = \frac{\sum_{i=1}^n(x_i - \bar{x})^2}{n-1}
s2=n−1∑i=1n(xi−xˉ)2
二维随机样本协方差公式
Covxy=∑i=1n(xi−μx)(yi−μy)n−1
Cov_{xy}=\frac{\sum_{i=1}^n(x_i-\mu_x)(y_i-\mu_y)}{n-1}
Covxy=n−1∑i=1n(xi−μx)(yi−μy)
协方差反映的是两个维度之间的相关性
二维以上计算协方差用的是协方差矩阵
,反映的是各个维度之间的关系
问题1:为什么样本方差公式中分母是 n-1
场景:求 α\alphaα取到何值时,f(α)=∑i=1n(Xi−α)f(\alpha)=\sum_{i=1}^n(X_i - \alpha)f(α)=∑i=1n(Xi−α)取到极小值?
原式子:
f(α)=(x1−α)2+(x2−α)2+...+(xn−α)2f(\alpha)=(x_1-\alpha)^2 + (x_2-\alpha)^2 + ... +(x_n-\alpha)^2f(α)=(x1−α)2+(x2−α)2+...+(xn−α)2
求一阶导数,让其等于0
f′(α)=−(2(x1−α)+2(x2−α)+...+2(xn−α))=0f'(\alpha)=-(2(x_1-\alpha)+2(x_2-\alpha)+...+2(x_n-\alpha))=0f′(α)=−(2(x1−α)+2(x2−α)+...+2(xn−α))=0
得
2(x1−α)+2(x2−α)+...+2(xn−α)=0\begin{aligned}
2(x_1-\alpha)+2(x_2-\alpha)+...+2(x_n-\alpha) = 0
\end{aligned}2(x1−α)+2(x2−α)+...+2(xn−α)=0
(x1+x2+...+xn)−nα=0\begin{aligned}
(x_1+x_2+...+x_n) - n\alpha= 0
\end{aligned}(x1+x2+...+xn)−nα=0
α=x1+x2+...+xnn=xˉ\begin{aligned}
\alpha = \frac{x_1+x_2+...+x_n}{n} = \bar{x}
\end{aligned}α=nx1+x2+...+xn=xˉ
这样我们就有结论:
∑i=1n(Xi−μ)2≥∑i=1n(Xi−Xˉ)2
\sum_{i=1}^n(X_i- \mu)^2 \geq \sum_{i=1}^n(X_i-\bar{X})^2
i=1∑n(Xi−μ)2≥i=1∑n(Xi−Xˉ)2
其中 μ\muμ 是总体的均值即期望,Xˉ\bar{X}Xˉ是样本的均值。
如果样本方差分母仍然保持 n,那有上面的不等式,可知样本方差就不能很好的估计总体方差了
所以,为了更准确估计总体,需要调小样本方差公式的分母,让其小于n,但需要小多少?
从自由度角度理解为什么样本方差分母是 n-1
样本方差分母应是其对应的自由度
自由度,是计算某一统计量,取值不受限的变量个数。
简单理解,就是能贡献信息的变量个数
求样本均值时,用到了 Xˉ=x1+x2+...+xnn\bar{X}=\frac{x_1+x_2+...+x_n}{n}Xˉ=nx1+x2+...+xn,由于公式分子中引入了Xˉ\bar{X}Xˉ 也就相当于增加了一个约束条件,在约束条件下,有效变量个数是 n-1。
因为第n个变量,可以有约束条件计算出来,即 xn=nXˉ−(x1+x2+...+xn−1)x_n=n\bar{X}-(x_1+x_2+...+x_{n-1})xn=nXˉ−(x1+x2+...+xn−1)
公式推导
什么是无偏估计量?当我们用样本统计量来估计总体参数时,如果估计量的数学期望等于被估计参数的真实值,我们称该估计量为被估计参数的
无偏估计
。
样本统计量 s2s^2s2,总体参数 σ2\sigma^2σ2。无偏估计即为:
E(S2)=σ2
E(S^2)=\sigma^2
E(S2)=σ2
证明上述等式:
E(s2)=E(1n−1∑i=1n(xi−xˉ)2)=E(1n−1∑i=1n(xi−μ+μ−xˉ)2)=E(1n−1∑i=1n((xi−μ)+(μ−xˉ))2)=E(1n−1∑i=1n((xi−μ)2+2(xi−μ)(μ−xˉ)+(μ−xˉ)2))=E(1n−1∑i=1n(xi−μ)2)+E(1n−1∑i=1n2(xi−μ)(μ−xˉ))+E(1n−1∑i=1n(μ−xˉ)2)
\begin{aligned}
E(s^2)&=E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i - \bar{x})^2\right)\\
&=E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i - \mu + \mu - \bar{x})^2 \right)\\
&=E\left(\frac{1}{n-1}\sum_{i=1}^n((x_i - \mu) + (\mu - \bar{x}))^2\right) \\
&=E\left(\frac{1}{n-1}\sum_{i=1}^n((x_i - \mu)^2 + 2(x_i-\mu)(\mu - \bar{x}) + (\mu-\bar{x})^2)\right) \\
&=E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i-\mu)^2\right) + E\left(\frac{1}{n-1}\sum_{i=1}^n2(x_i-\mu)(\mu-\bar{x})\right) + E\left(\frac{1}{n-1}\sum_{i=1}^n(\mu-\bar{x})^2\right)
\end{aligned}
E(s2)=E(n−11i=1∑n(xi−xˉ)2)=E(n−11i=1∑n(xi−μ+μ−xˉ)2)=E(n−11i=1∑n((xi−μ)+(μ−xˉ))2)=E(n−11i=1∑n((xi−μ)2+2(xi−μ)(μ−xˉ)+(μ−xˉ)2))=E(n−11i=1∑n(xi−μ)2)+E(n−11i=1∑n2(xi−μ)(μ−xˉ))+E(n−11i=1∑n(μ−xˉ)2)
第一部分:
E(1n−1∑i=1n(xi−μ)2)=1n−1∑i=1nE(xi−μ)2=1n−1∑i=1nσ2=nn−1σ2\begin{aligned}
E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i-\mu)^2\right) &= \frac{1}{n-1}\sum_{i=1}^n{\color{red}{E(x_i - \mu)^2}} \\
&= \frac{1}{n-1}\sum_{i=1}^n{\color{red}{\sigma^2}} \\
&=\frac{n}{n-1}{\color{red}{\sigma^2}}
\end{aligned}E(n−11i=1∑n(xi−μ)2)=n−11i=1∑nE(xi−μ)2=n−11i=1∑nσ2=n−1nσ2
第二部分:
E(1n−1∑i=1n2(xi−μ)(μ−xˉ))=2n−1E(∑i=1n(xi−μ)(μ−xˉ))=2n−1E((μ−xˉ)∑i=1n(xi−μ))=2n−1E((μ−xˉ)n(xˉ−μ))=2(−n)n−1E((xˉ−μ)2)\begin{aligned}
E\left(\frac{1}{n-1}\sum_{i=1}^n2(x_i-\mu)(\mu-\bar{x})\right) &=\frac{2}{n-1}E\left(\sum_{i=1}^n(x_i - \mu)(\mu-\bar{x})\right) \\
&=\frac{2}{n-1}E\left((\mu-\bar{x}){\color{red}{\sum_{i=1}^n(x_i - \mu)}}\right) \\
&=\frac{2}{n-1}E\left( (\mu-\bar{x}){\color{red}{n(\bar{x}-\mu)}} \right) \\
&=\frac{2(-n)}{n-1}E\left( (\bar{x}-\mu)^2\right) \\
\end{aligned}E(n−11i=1∑n2(xi−μ)(μ−xˉ))=n−12E(i=1∑n(xi−μ)(μ−xˉ))=n−12E((μ−xˉ)i=1∑n(xi−μ))=n−12E((μ−xˉ)n(xˉ−μ))=n−12(−n)E((xˉ−μ)2)
第三部分:
E(1n−1∑i=1n(μ−xˉ)2)=E(nn−1(μ−xˉ)2)=nn−1E((μ−xˉ)2)\begin{aligned}
E\left(\frac{1}{n-1}\sum_{i=1}^n(\mu-\bar{x})^2\right) &= E\left( \frac{n}{n-1}(\mu-\bar{x})^2\right) \\
&=\frac{n}{n-1}E\left( (\mu-\bar{x})^2\right)
\end{aligned}E(n−11i=1∑n(μ−xˉ)2)=E(n−1n(μ−xˉ)2)=n−1nE((μ−xˉ)2)
由此可知,原式子:
E(s2)=nn−1σ2+2(−n)n−1E((xˉ−μ)2)+nn−1E((μ−xˉ)2)=nn−1σ2+(−n)n−1E((xˉ−μ)2)=nn−1σ2+(−n)n−11nσ2=σ2\begin{aligned}
E(s^2) &= \frac{n}{n-1}\sigma^2 + \frac{2(-n)}{n-1}E\left( (\bar{x}-\mu)^2\right) + \frac{n}{n-1}E\left( (\mu-\bar{x})^2\right) \\
&=\frac{n}{n-1}\sigma^2 + \frac{(-n)}{n-1}{\color{red}{E\left( (\bar{x}-\mu)^2\right)}} \\
&=\frac{n}{n-1}\sigma^2 + \frac{(-n)}{n-1}{\color{red}{ \frac{1}{n} \sigma^2}} \\
&= \sigma^2
\end{aligned}E(s2)=n−1nσ2+n−12(−n)E((xˉ−μ)2)+n−1nE((μ−xˉ)2)=n−1nσ2+n−1(−n)E((xˉ−μ)2)=n−1nσ2+n−1(−n)n1σ2=σ2
其中,样本均值是无偏的,可得:
E((xˉ−μ)2)=E(xˉ−E(xˉ))2=var(xˉ)=var(∑i=1nxin)=1n2var(∑i=1nxi)=1n2∑i=1nvar(xi)=1n2nσ2=1nσ2\begin{aligned}
E\left( (\bar{x}-\mu)^2\right) &= E(\bar{x}-E(\bar{x}))^2 =var(\bar{x}) \\
&=var\left( \frac{\sum_{i=1}^nx_i}{n} \right) \\
&=\frac{1}{n^2}var\left( \sum_{i=1}^nx_i \right) \\
&=\frac{1}{n^2} \sum_{i=1}^n {\color{red}{var(x_i)}} \\
&=\frac{1}{n^2} n {\color{red}{\sigma^2}} = \frac{1}{n} \sigma^2
\end{aligned}E((xˉ−μ)2)=E(xˉ−E(xˉ))2=var(xˉ)=var(n∑i=1nxi)=n21var(i=1∑nxi)=n21i=1∑nvar(xi)=n21nσ2=n1σ2
xix_ixi 之间是相互独立的,所以 var(∑i=1nxi)=∑i=1nvar(xi)var\left( \sum_{i=1}^nx_i \right)= \sum_{i=1}^n var(x_i)var(∑i=1nxi)=∑i=1nvar(xi)
问题2:多维随机变量的协方差矩阵怎么计算?
二维随机样本协方差公式
Covxy=∑i=1n(xi−μx)(yi−μy)n−1
Cov_{xy}=\frac{\sum_{i=1}^n(x_i-\mu_x)(y_i-\mu_y)}{n-1}
Covxy=n−1∑i=1n(xi−μx)(yi−μy)
多维的情况下,是两两协方差
总体协方差时,分母是 n;样本协方差时,分母是 n-1
举例:多维数据如下
Student | Math | English | Art |
---|---|---|---|
1 | 90 | 60 | 90 |
2 | 90 | 90 | 30 |
3 | 60 | 60 | 60 |
4 | 60 | 60 | 90 |
5 | 30 | 30 | 30 |
第一步:计算均值
Math:66,English:60,Art:60
即均值向量为 μ=(66,60,60)\bm{\mu}=(66, 60, 60)μ=(66,60,60)
第二步:计算差值矩阵
均值向量按照数据数量(示例中是5)纵向展开,得到均值矩阵,原数据矩阵与均值矩阵作差
A=[906090909030606060606090303030]−[666060666060666060666060666060]=[240302430−30−600−6030−36−30−30]\begin{aligned} A &= \begin{bmatrix} 90 & 60 & 90 \\ 90 & 90 & 30 \\ 60 & 60 & 60 \\ 60 & 60 & 90 \\ 30 & 30 & 30 \end{bmatrix} - \begin{bmatrix} 66 & 60 & 60 \\ 66 & 60 & 60 \\ 66 & 60 & 60 \\ 66 & 60 & 60 \\ 66 & 60 & 60 \\ \end{bmatrix} \\ &= \begin{bmatrix} 24 & 0 & 30 \\ 24 & 30 & -30 \\ -6 & 0 & 0 \\ -6 & 0 & 30 \\ -36 & -30 & -30 \\ \end{bmatrix} \end{aligned}A=909060603060906060309030609030−666666666660606060606060606060=2424−6−6−3603000−3030−30030−30
第三步:根据差值矩阵,计算维度彼此间的协方差
Σ=[Cov11Cov12Cov13Cov21Cov22Cov23Cov31Cov32Cov33]
\boldsymbol{\Sigma} = \begin{bmatrix}
Cov_{11} & Cov_{12} & Cov_{13} \\
Cov_{21} & Cov_{22} & Cov_{23} \\
Cov_{31} & Cov_{32} & Cov_{33} \\
\end{bmatrix}
Σ=Cov11Cov21Cov31Cov12Cov22Cov32Cov13Cov23Cov33
结合二维随机变量协方差公式,可得
为了方便公式书写,计算都没有除以 n
n⋅Cov11=∑i=1nAi1⋅Ai1=24∗24+24∗24+(−6)∗(−6)+(−6)∗(−6)+(−36)∗(−36)=2520\begin{aligned}
n \cdot Cov_{11}&=\sum_{i=1}^n A_{i1} \cdot A_{i1} \\
&= 24*24 + 24*24 + (-6)*(-6) + (-6)*(-6) + (-36)*(-36) \\
&= 2520
\end{aligned}n⋅Cov11=i=1∑nAi1⋅Ai1=24∗24+24∗24+(−6)∗(−6)+(−6)∗(−6)+(−36)∗(−36)=2520
n⋅Cov23=∑i=1nAi2⋅Ai3=0∗30+30∗(−30)+0∗0+0∗30+(−30)∗(−30)=0\begin{aligned}
n \cdot Cov_{23}&=\sum_{i=1}^n A_{i2} \cdot A_{i3} \\
&= 0*30 + 30*(-30) + 0*0 + 0*30 + (-30)*(-30) \\
&= 0
\end{aligned}
n⋅Cov23=i=1∑nAi2⋅Ai3=0∗30+30∗(−30)+0∗0+0∗30+(−30)∗(−30)=0
依次计算可得:
Σ=1n⋅[2520180090018001800090003600]=[50436018036036001800720]
\boldsymbol{\Sigma} = \frac{1}{n} \cdot \begin{bmatrix}
2520 & 1800 & 900 \\
1800 & 1800 & 0 \\
900 & 0 & 3600 \\
\end{bmatrix} = \begin{bmatrix}
504 & 360 & 180 \\
360 & 360 & 0 \\
180 & 0 & 720 \\
\end{bmatrix}
Σ=n1⋅2520180090018001800090003600=50436018036036001800720
这里我们把原始数据集当做总体,协方差公式的分母用 n
至此,结束。