随机变量数字特征

主要介绍一维随机变量期望和方差、二维随机变量期望和方差、以及协方差相关公式,及推导。

一维随机变量

以一个抛硬币的场景作为例子,如下:

抛掷两枚均匀硬币,如果两枚都是正面向上,则赢得2元,否则就输掉1元。某人进行了 100次,结果如下表,求赢钱的平均值和方差

HHHTTHTT
30203020

又有,分布律:
其中随机变量对应示例中的赢钱金额

随机变量 XXX2-1
频率 fff0.30.7
概率 ppp0.250.75
1. 期望与方差

平均值记为 xˉ\bar{x}xˉ
xˉ=1n∑i=1nxi=∑i=1nxi∗fi=2∗0.3+(−1)∗0.7=−0.1\begin{aligned} \bar{x}&= \frac{1}{n}\sum_{i=1}^nx_i = \sum_{i=1}^nx_i*f_i \\ &= 2*0.3+(-1)*0.7 \\ &= -0.1 \end{aligned}xˉ=n1i=1nxi=i=1nxifi=20.3+(1)0.7=0.1

随机变量(赢钱金额)的数学期望为:
E(x)=∑i=1nxi∗pi=2∗0.25+(−1)∗0.75=−0.25\begin{aligned} E(x) &= \sum_{i=1}^nx_i*p_i \\ &= 2*0.25 + (-1)*0.75=-0.25 \end{aligned}E(x)=i=1nxipi=20.25+(1)0.75=0.25

平均值:通过频率 fff 计算出来的均值。
数学期望:通过概率 ppp 计算出来的均值。

对于均值, 方差为
s2=1n∑i=1n(xi−xˉ)2 s^2 = \frac{1}{n}\sum_{i=1}^n(x_i - \bar{x})^2 s2=n1i=1n(xixˉ)2
计算结果 s2=(2+0.1)2∗0.3+(−1+0.1)2∗0.7=1.89s^2=(2+0.1)^2*0.3 + (-1+0.1)^2*0.7=1.89s2=(2+0.1)20.3+(1+0.1)20.7=1.89

对于期望, 方差可以理解为上述中的均值改为期望,频率改为概率。(实际样本方差求平均时,分母是 n-1)

由此基础,我们引出方差的公式

D(X)=E(X−E(X))2 D(X) = E(X - E(X))^2 D(X)=E(XE(X))2

数学期望和方差(标准差)分别反映了随机变量分布的中心位置与集散程度。

2. 期望与方差性质

常数 c 的期望和方差:
E(c)=∑i=1nc∗pi=c∑i=1npi=cE(c) = \sum_{i=1}^n c*p_i=c\sum_{i=1}^np_i=cE(c)=i=1ncpi=ci=1npi=c
D(c)=E(c−E(c))2=E(c−c)2=0D(c)=E(c - E(c))^2 = E(c - c)^2=0D(c)=E(cE(c))2=E(cc)2=0

常数与随机变量的乘积:
E(cX)=∑i=1nc∗xi∗pi=cE(X)E(cX)=\sum_{i=1}^nc*x_i*p_i=cE(X)E(cX)=i=1ncxipi=cE(X)
D(cX)=E(cX−E(cX))2=c2E(X−E(X))2=c2D(X)D(cX)=E(cX - E(cX))^2=c^2E(X-E(X))^2=c^2D(X)D(cX)=E(cXE(cX))2=c2E(XE(X))2=c2D(X)

随机变量和:
E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)
D(X+Y)=D(X)+D(Y)\color{red}{D(X+Y)=D(X)+D(Y)}D(X+Y)=D(X)+D(Y)

X、Y相互独立时, 红色亮显公式D(X+Y) 才成立。

方差的计算公式:
D(X)=E(X−E(X))2=E[X2−2XE(X)+(E(X))2]=E(X2)−E(2XE(X))+E[(E(X))2]=E(X2)−2(E(X))2+(E(X))2=E(X2)−(E(X))2\begin{aligned} D(X) &=E(X-E(X))^2 \\ &= E[X^2 - 2XE(X) + (E(X))^2] \\ &=E(X^2) - E(2XE(X)) + E[(E(X))^2] \\ &= E(X^2) - 2(E(X))^2 + (E(X))^2 \\ &= E(X^2) - (E(X))^2 \end{aligned}D(X)=E(XE(X))2=E[X22XE(X)+(E(X))2]=E(X2)E(2XE(X))+E[(E(X))2]=E(X2)2(E(X))2+(E(X))2=E(X2)(E(X))2

二维随机变量

1. 期望

二维离散型随机变量 (X, Y) 的分布律:
P{X=xi,Y=yj}=piji,j=1,2,...P\{X=x_i, Y=y_j\}=p_{ij} \quad i,j=1,2,...P{X=xi,Y=yj}=piji,j=1,2,...
二维连续型随机变量 (X, Y) 的概率密度函数f(x,y)f(x, y)f(x,y)

假设二维随机变量的函数为 g(X,Y)g(X, Y)g(X,Y),则:
离散场景
E(g(X,Y))=∑i=0n∑j=0ng(xi,yj)pijE(g(X, Y))= {\color{blue}{\sum_{i=0}^n \sum_{j=0}^n}}{\color{purple}{g(x_i, y_j)}}{\color{green}{p_{ij}}}E(g(X,Y))=i=0nj=0ng(xi,yj)pij

连续场景
E(g(X,Y))=∫−∞+∞∫−∞+∞ g(x,y) f(x,y) dx dyE(g(X, Y)) ={\color{blue}{\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}}} \, {\color{purple}{g(x, y)}} \, {\color{green}{f(x, y) \, dx \, dy}}E(g(X,Y))=++g(x,y)f(x,y)dxdy

无论离散还是连续,都可以理解为三方部分:求和、函数值、概率,的乘积。

2. 期望的性质

例如:g(X,Y)=X+Yg(X, Y) = X + Yg(X,Y)=X+Y

1) 和的期望等于期望的和
E(X+Y)=∫−∞+∞∫−∞+∞(x+y)f(x,y)dxdy=∫−∞+∞x(∫−∞+∞f(x,y)dy)dx+∫−∞+∞y(∫−∞+∞f(x,y)dx)dy=∫−∞+∞xfXdx+∫−∞+∞yfYdy=E(X)+E(Y)\begin{aligned} E(X + Y) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} (x+y)f(x, y)dxdy \\ &=\int_{-\infty}^{+\infty}x(\int_{-\infty}^{+\infty}f(x, y)dy)dx + \int_{-\infty}^{+\infty}y(\int_{-\infty}^{+\infty}f(x, y)dx)dy \\ &=\int_{-\infty}^{+\infty}xf_Xdx + \int_{-\infty}^{+\infty}yf_Ydy \\ &=E(X) + E(Y) \end{aligned}E(X+Y)=++(x+y)f(x,y)dxdy=+x(+f(x,y)dy)dx++y(+f(x,y)dx)dy=+xfXdx++yfYdy=E(X)+E(Y)

推广:
E(∑k=1nXk)=∑k=1nE(Xk)E(\sum_{k=1}^nX_k) = \sum_{k=1}^nE(X_k)E(k=1nXk)=k=1nE(Xk)

2) 若随机变量X、Y相互独立,则 E(XY) = E(X)E(Y)
E(XY)=∫−∞+∞∫−∞+∞xyf(x,y)dxdy=∫−∞+∞∫−∞+∞xyfX(x)fY(y)dxdy=∫−∞+∞xfX(x)dx⋅∫−∞+∞yfY(y)dy=E(X)⋅E(Y)\begin{aligned} E(XY) &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xy{\color{red}{f(x,y)}}dxdy \\ &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xy{\color{red}{f_X(x)f_Y(y)}}dxdy \\ &=\int_{-\infty}^{+\infty}xf_X(x)dx \cdot \int_{-\infty}^{+\infty}yf_Y(y)dy \\ &= E(X) \cdot E(Y) \end{aligned}E(XY)=++xyf(x,y)dxdy=++xyfX(x)fY(y)dxdy=+xfX(x)dx+yfY(y)dy=E(X)E(Y)

其中绿色部分是有变量 X、Y相互独立得出

3. 协方差

例如:g(X,Y)=X+Yg(X, Y) = X + Yg(X,Y)=X+Y

D(X+Y)=E(X+Y)2−(E(X+Y))2=E(X+Y)2−(E(X)+E(Y))2=E(X2)+E(Y2)+2E(XY)−(E(X))2−(E(Y))2−2E(X)E(Y)=D(X)+D(Y)+2(E(XY)−E(X)E(Y))\begin{aligned} D(X+Y) &= E(X+Y)^2 - (E(X+Y))^2 \\ &= E(X+Y)^2 - (E(X) + E(Y))^2 \\ &=E(X^2) + E(Y^2) + 2E(XY) - (E(X))^2 - (E(Y))^2 - 2 E(X)E(Y) \\ &=D(X) + D(Y) + 2({\color{blue}{E(XY) - E(X)E(Y)}}) \end{aligned}D(X+Y)=E(X+Y)2(E(X+Y))2=E(X+Y)2(E(X)+E(Y))2=E(X2)+E(Y2)+2E(XY)(E(X))2(E(Y))22E(X)E(Y)=D(X)+D(Y)+2(E(XY)E(X)E(Y))

定义上述式子中蓝色部分为协方差,即
Cov(X,Y)=E(XY)−E(X)E(Y)Cov(X, Y) = E(XY) - E(X)E(Y)Cov(X,Y)=E(XY)E(X)E(Y)

等价表达式:
Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}Cov(X, Y) = E\{[X - E(X)][Y-E(Y)]\}Cov(X,Y)=E{[XE(X)][YE(Y)]}

4. 协方差性质

性质1 若随机变量X、Y相互独立,则 Cov(X,Y)=0Cov(X, Y) = 0Cov(X,Y)=0,反之不然
性质2 D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X+Y) = D(X) + D(Y) + 2Cov(X, Y)D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
性质3 Cov(X,X)=D(X)Cov(X, X)=D(X)Cov(X,X)=D(X)
性质4 Cov(aX,bX)=abCov(X,Y)Cov(aX, bX)=abCov(X, Y)Cov(aX,bX)=abCov(X,Y)
性质5 Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)Cov(X_1 + X_2, Y)=Cov(X_1, Y) + Cov(X_2, Y)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

5. 标准化

随机变量 X,Y 标准化:
X∗=X−E(X)D(X)=X−μ1σ1X^* = \frac{X-E(X)}{\sqrt{D(X)}}=\frac{X-\mu_1}{\sigma_1}X=D(X)XE(X)=σ1Xμ1
Y∗=Y−E(Y)D(Y)=Y−μ2σ2Y^* = \frac{Y-E(Y)}{\sqrt{D(Y)}}=\frac{Y-\mu_2}{\sigma_2}Y=D(Y)YE(Y)=σ2Yμ2

可以推出:
E(X∗)=E(X−μ1σ1)=1σ1(E(X)−μ1)=0E(X^*) = E(\frac{X-\mu_1}{\sigma_1})=\frac{1}{\sigma_1}(E(X)-\mu_1)=0E(X)=E(σ1Xμ1)=σ11(E(X)μ1)=0

D(X∗)=D(X−μ1σ1)=1σ12D(X)=1D(X^*) = D(\frac{X-\mu_1}{\sigma_1})=\frac{1}{\sigma_1^2}D(X)=1D(X)=D(σ1Xμ1)=σ121D(X)=1

可以推出:任意随机变量经过标准化后其期望为0,方差为1

随机变量 X,Y 的相关系数:
Cov(X∗,Y∗)=Cov(X−μ1σ1,Y−μ2σ2)=1σ1σ2⋅Cov(X,Y)=Cov(X,Y)D(X)⋅D(Y)\begin{aligned} Cov(X^*, Y^*) &=Cov(\frac{X-\mu_1}{\sigma_1}, \frac{Y-\mu_2}{\sigma_2}) \\ &= \frac{1}{\sigma_1\sigma_2} \cdot Cov(X, Y) \\ &= {\color{blue}{\frac{Cov(X, Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}}} \end{aligned}Cov(X,Y)=Cov(σ1Xμ1,σ2Yμ2)=σ1σ21Cov(X,Y)=D(X)D(Y)Cov(X,Y)

上述式子中的蓝色部分定义为相关系数,即
ρxy=Cov(X,Y)D(X)⋅D(Y)\rho_{xy}=\frac{Cov(X, Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}ρxy=D(X)D(Y)Cov(X,Y)

其中,相关系数恒在 -1 到 1 之间。

矩估计

样本矩(频率分布)总体矩(概率分布)
k阶矩αk=1n∑i=1nxik\alpha_k=\frac{1}{n}\sum_{i=1}^nx_i^kαk=n1i=1nxikE(Xk)=AkE(X^k)=A_kE(Xk)=Ak
样本均值xˉ=α1\bar{x}=\alpha_1xˉ=α1E(X)=A1E(X)=A_1E(X)=A1
样本方差s2=1n−1(∑i=1nxi2−nxˉ2)=nn−1(α2−α12)s^2=\frac{1}{n-1}(\sum_{i=1}^nx_i^2 - n\bar{x}^2) =\frac{n}{n-1}(\alpha_2 - \alpha_1^2)s2=n11(i=1nxi2nxˉ2)=n1n(α2α12)D(X)=E(X2)−(E(X))2=A2−A12D(X)=E(X^2)-(E(X))^2=A_2 - A_1^2D(X)=E(X2)(E(X))2=A2A12

补充:
一维随机样本方差公式
s2=∑i=1n(xi−xˉ)2n−1 s^2 = \frac{\sum_{i=1}^n(x_i - \bar{x})^2}{n-1} s2=n1i=1n(xixˉ)2
二维随机样本协方差公式
Covxy=∑i=1n(xi−μx)(yi−μy)n−1 Cov_{xy}=\frac{\sum_{i=1}^n(x_i-\mu_x)(y_i-\mu_y)}{n-1} Covxy=n1i=1n(xiμx)(yiμy)

协方差反映的是两个维度之间的相关性
二维以上计算协方差用的是协方差矩阵,反映的是各个维度之间的关系

问题1:为什么样本方差公式中分母是 n-1

场景:求 α\alphaα取到何值时,f(α)=∑i=1n(Xi−α)f(\alpha)=\sum_{i=1}^n(X_i - \alpha)f(α)=i=1n(Xiα)取到极小值?

原式子:
f(α)=(x1−α)2+(x2−α)2+...+(xn−α)2f(\alpha)=(x_1-\alpha)^2 + (x_2-\alpha)^2 + ... +(x_n-\alpha)^2f(α)=(x1α)2+(x2α)2+...+(xnα)2

求一阶导数,让其等于0
f′(α)=−(2(x1−α)+2(x2−α)+...+2(xn−α))=0f'(\alpha)=-(2(x_1-\alpha)+2(x_2-\alpha)+...+2(x_n-\alpha))=0f(α)=(2(x1α)+2(x2α)+...+2(xnα))=0

2(x1−α)+2(x2−α)+...+2(xn−α)=0\begin{aligned} 2(x_1-\alpha)+2(x_2-\alpha)+...+2(x_n-\alpha) = 0 \end{aligned}2(x1α)+2(x2α)+...+2(xnα)=0
(x1+x2+...+xn)−nα=0\begin{aligned} (x_1+x_2+...+x_n) - n\alpha= 0 \end{aligned}(x1+x2+...+xn)nα=0
α=x1+x2+...+xnn=xˉ\begin{aligned} \alpha = \frac{x_1+x_2+...+x_n}{n} = \bar{x} \end{aligned}α=nx1+x2+...+xn=xˉ

这样我们就有结论:
∑i=1n(Xi−μ)2≥∑i=1n(Xi−Xˉ)2 \sum_{i=1}^n(X_i- \mu)^2 \geq \sum_{i=1}^n(X_i-\bar{X})^2 i=1n(Xiμ)2i=1n(XiXˉ)2

其中 μ\muμ 是总体的均值即期望,Xˉ\bar{X}Xˉ是样本的均值。
如果样本方差分母仍然保持 n,那有上面的不等式,可知样本方差就不能很好的估计总体方差了

所以,为了更准确估计总体,需要调小样本方差公式的分母,让其小于n,但需要小多少?

从自由度角度理解为什么样本方差分母是 n-1
样本方差分母应是其对应的自由度

自由度,是计算某一统计量,取值不受限的变量个数。

简单理解,就是能贡献信息的变量个数

求样本均值时,用到了 Xˉ=x1+x2+...+xnn\bar{X}=\frac{x_1+x_2+...+x_n}{n}Xˉ=nx1+x2+...+xn,由于公式分子中引入了Xˉ\bar{X}Xˉ 也就相当于增加了一个约束条件,在约束条件下,有效变量个数是 n-1。

因为第n个变量,可以有约束条件计算出来,即 xn=nXˉ−(x1+x2+...+xn−1)x_n=n\bar{X}-(x_1+x_2+...+x_{n-1})xn=nXˉ(x1+x2+...+xn1)

公式推导

什么是无偏估计量?当我们用样本统计量来估计总体参数时,如果估计量的数学期望等于被估计参数的真实值,我们称该估计量为被估计参数的无偏估计

样本统计量 s2s^2s2,总体参数 σ2\sigma^2σ2。无偏估计即为:
E(S2)=σ2 E(S^2)=\sigma^2 E(S2)=σ2
证明上述等式:
E(s2)=E(1n−1∑i=1n(xi−xˉ)2)=E(1n−1∑i=1n(xi−μ+μ−xˉ)2)=E(1n−1∑i=1n((xi−μ)+(μ−xˉ))2)=E(1n−1∑i=1n((xi−μ)2+2(xi−μ)(μ−xˉ)+(μ−xˉ)2))=E(1n−1∑i=1n(xi−μ)2)+E(1n−1∑i=1n2(xi−μ)(μ−xˉ))+E(1n−1∑i=1n(μ−xˉ)2) \begin{aligned} E(s^2)&=E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i - \bar{x})^2\right)\\ &=E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i - \mu + \mu - \bar{x})^2 \right)\\ &=E\left(\frac{1}{n-1}\sum_{i=1}^n((x_i - \mu) + (\mu - \bar{x}))^2\right) \\ &=E\left(\frac{1}{n-1}\sum_{i=1}^n((x_i - \mu)^2 + 2(x_i-\mu)(\mu - \bar{x}) + (\mu-\bar{x})^2)\right) \\ &=E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i-\mu)^2\right) + E\left(\frac{1}{n-1}\sum_{i=1}^n2(x_i-\mu)(\mu-\bar{x})\right) + E\left(\frac{1}{n-1}\sum_{i=1}^n(\mu-\bar{x})^2\right) \end{aligned} E(s2)=E(n11i=1n(xixˉ)2)=E(n11i=1n(xiμ+μxˉ)2)=E(n11i=1n((xiμ)+(μxˉ))2)=E(n11i=1n((xiμ)2+2(xiμ)(μxˉ)+(μxˉ)2))=E(n11i=1n(xiμ)2)+E(n11i=1n2(xiμ)(μxˉ))+E(n11i=1n(μxˉ)2)
第一部分:
E(1n−1∑i=1n(xi−μ)2)=1n−1∑i=1nE(xi−μ)2=1n−1∑i=1nσ2=nn−1σ2\begin{aligned} E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i-\mu)^2\right) &= \frac{1}{n-1}\sum_{i=1}^n{\color{red}{E(x_i - \mu)^2}} \\ &= \frac{1}{n-1}\sum_{i=1}^n{\color{red}{\sigma^2}} \\ &=\frac{n}{n-1}{\color{red}{\sigma^2}} \end{aligned}E(n11i=1n(xiμ)2)=n11i=1nE(xiμ)2=n11i=1nσ2=n1nσ2
第二部分:
E(1n−1∑i=1n2(xi−μ)(μ−xˉ))=2n−1E(∑i=1n(xi−μ)(μ−xˉ))=2n−1E((μ−xˉ)∑i=1n(xi−μ))=2n−1E((μ−xˉ)n(xˉ−μ))=2(−n)n−1E((xˉ−μ)2)\begin{aligned} E\left(\frac{1}{n-1}\sum_{i=1}^n2(x_i-\mu)(\mu-\bar{x})\right) &=\frac{2}{n-1}E\left(\sum_{i=1}^n(x_i - \mu)(\mu-\bar{x})\right) \\ &=\frac{2}{n-1}E\left((\mu-\bar{x}){\color{red}{\sum_{i=1}^n(x_i - \mu)}}\right) \\ &=\frac{2}{n-1}E\left( (\mu-\bar{x}){\color{red}{n(\bar{x}-\mu)}} \right) \\ &=\frac{2(-n)}{n-1}E\left( (\bar{x}-\mu)^2\right) \\ \end{aligned}E(n11i=1n2(xiμ)(μxˉ))=n12E(i=1n(xiμ)(μxˉ))=n12E((μxˉ)i=1n(xiμ))=n12E((μxˉ)n(xˉμ))=n12(n)E((xˉμ)2)
第三部分:
E(1n−1∑i=1n(μ−xˉ)2)=E(nn−1(μ−xˉ)2)=nn−1E((μ−xˉ)2)\begin{aligned} E\left(\frac{1}{n-1}\sum_{i=1}^n(\mu-\bar{x})^2\right) &= E\left( \frac{n}{n-1}(\mu-\bar{x})^2\right) \\ &=\frac{n}{n-1}E\left( (\mu-\bar{x})^2\right) \end{aligned}E(n11i=1n(μxˉ)2)=E(n1n(μxˉ)2)=n1nE((μxˉ)2)

由此可知,原式子:
E(s2)=nn−1σ2+2(−n)n−1E((xˉ−μ)2)+nn−1E((μ−xˉ)2)=nn−1σ2+(−n)n−1E((xˉ−μ)2)=nn−1σ2+(−n)n−11nσ2=σ2\begin{aligned} E(s^2) &= \frac{n}{n-1}\sigma^2 + \frac{2(-n)}{n-1}E\left( (\bar{x}-\mu)^2\right) + \frac{n}{n-1}E\left( (\mu-\bar{x})^2\right) \\ &=\frac{n}{n-1}\sigma^2 + \frac{(-n)}{n-1}{\color{red}{E\left( (\bar{x}-\mu)^2\right)}} \\ &=\frac{n}{n-1}\sigma^2 + \frac{(-n)}{n-1}{\color{red}{ \frac{1}{n} \sigma^2}} \\ &= \sigma^2 \end{aligned}E(s2)=n1nσ2+n12(n)E((xˉμ)2)+n1nE((μxˉ)2)=n1nσ2+n1(n)E((xˉμ)2)=n1nσ2+n1(n)n1σ2=σ2

其中,样本均值是无偏的,可得:
E((xˉ−μ)2)=E(xˉ−E(xˉ))2=var(xˉ)=var(∑i=1nxin)=1n2var(∑i=1nxi)=1n2∑i=1nvar(xi)=1n2nσ2=1nσ2\begin{aligned} E\left( (\bar{x}-\mu)^2\right) &= E(\bar{x}-E(\bar{x}))^2 =var(\bar{x}) \\ &=var\left( \frac{\sum_{i=1}^nx_i}{n} \right) \\ &=\frac{1}{n^2}var\left( \sum_{i=1}^nx_i \right) \\ &=\frac{1}{n^2} \sum_{i=1}^n {\color{red}{var(x_i)}} \\ &=\frac{1}{n^2} n {\color{red}{\sigma^2}} = \frac{1}{n} \sigma^2 \end{aligned}E((xˉμ)2)=E(xˉE(xˉ))2=var(xˉ)=var(ni=1nxi)=n21var(i=1nxi)=n21i=1nvar(xi)=n21nσ2=n1σ2

xix_ixi 之间是相互独立的,所以 var(∑i=1nxi)=∑i=1nvar(xi)var\left( \sum_{i=1}^nx_i \right)= \sum_{i=1}^n var(x_i)var(i=1nxi)=i=1nvar(xi)

问题2:多维随机变量的协方差矩阵怎么计算?

二维随机样本协方差公式
Covxy=∑i=1n(xi−μx)(yi−μy)n−1 Cov_{xy}=\frac{\sum_{i=1}^n(x_i-\mu_x)(y_i-\mu_y)}{n-1} Covxy=n1i=1n(xiμx)(yiμy)

多维的情况下,是两两协方差
总体协方差时,分母是 n;样本协方差时,分母是 n-1

举例:多维数据如下

StudentMathEnglishArt
1906090
2909030
3606060
4606090
5303030

第一步:计算均值
Math:66,English:60,Art:60
即均值向量为 μ=(66,60,60)\bm{\mu}=(66, 60, 60)μ=(66,60,60)

第二步:计算差值矩阵
均值向量按照数据数量(示例中是5)纵向展开,得到均值矩阵,原数据矩阵与均值矩阵作差

A=[906090909030606060606090303030]−[666060666060666060666060666060]=[240302430−30−600−6030−36−30−30]\begin{aligned} A &= \begin{bmatrix} 90 & 60 & 90 \\ 90 & 90 & 30 \\ 60 & 60 & 60 \\ 60 & 60 & 90 \\ 30 & 30 & 30 \end{bmatrix} - \begin{bmatrix} 66 & 60 & 60 \\ 66 & 60 & 60 \\ 66 & 60 & 60 \\ 66 & 60 & 60 \\ 66 & 60 & 60 \\ \end{bmatrix} \\ &= \begin{bmatrix} 24 & 0 & 30 \\ 24 & 30 & -30 \\ -6 & 0 & 0 \\ -6 & 0 & 30 \\ -36 & -30 & -30 \\ \end{bmatrix} \end{aligned}A=909060603060906060309030609030666666666660606060606060606060=242466360300030303003030

第三步:根据差值矩阵,计算维度彼此间的协方差
Σ=[Cov11Cov12Cov13Cov21Cov22Cov23Cov31Cov32Cov33] \boldsymbol{\Sigma} = \begin{bmatrix} Cov_{11} & Cov_{12} & Cov_{13} \\ Cov_{21} & Cov_{22} & Cov_{23} \\ Cov_{31} & Cov_{32} & Cov_{33} \\ \end{bmatrix} Σ=Cov11Cov21Cov31Cov12Cov22Cov32Cov13Cov23Cov33

结合二维随机变量协方差公式,可得
为了方便公式书写,计算都没有除以 n
n⋅Cov11=∑i=1nAi1⋅Ai1=24∗24+24∗24+(−6)∗(−6)+(−6)∗(−6)+(−36)∗(−36)=2520\begin{aligned} n \cdot Cov_{11}&=\sum_{i=1}^n A_{i1} \cdot A_{i1} \\ &= 24*24 + 24*24 + (-6)*(-6) + (-6)*(-6) + (-36)*(-36) \\ &= 2520 \end{aligned}nCov11=i=1nAi1Ai1=2424+2424+(6)(6)+(6)(6)+(36)(36)=2520
n⋅Cov23=∑i=1nAi2⋅Ai3=0∗30+30∗(−30)+0∗0+0∗30+(−30)∗(−30)=0\begin{aligned} n \cdot Cov_{23}&=\sum_{i=1}^n A_{i2} \cdot A_{i3} \\ &= 0*30 + 30*(-30) + 0*0 + 0*30 + (-30)*(-30) \\ &= 0 \end{aligned} nCov23=i=1nAi2Ai3=030+30(30)+00+030+(30)(30)=0

依次计算可得:
Σ=1n⋅[2520180090018001800090003600]=[50436018036036001800720] \boldsymbol{\Sigma} = \frac{1}{n} \cdot \begin{bmatrix} 2520 & 1800 & 900 \\ 1800 & 1800 & 0 \\ 900 & 0 & 3600 \\ \end{bmatrix} = \begin{bmatrix} 504 & 360 & 180 \\ 360 & 360 & 0 \\ 180 & 0 & 720 \\ \end{bmatrix} Σ=n12520180090018001800090003600=50436018036036001800720

这里我们把原始数据集当做总体,协方差公式的分母用 n

至此,结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值