PAT (Basic Level) Practice (中文)--1070 结绳 (25 分)

该博客探讨了一个数学问题,涉及将多段绳子通过对折串连以达到最大长度。关键在于理解每次串连后绳子长度减半,因此需要按长度从小到大排序,优先对折较短的绳子。提供的代码示例展示了如何实现这一策略,通过排序和迭代计算最终的绳子长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一段一段的绳子,你需要把它们串成一条绳。每次串连的时候,是把两段绳子对折,再如下图所示套接在一起。这样得到的绳子又被当成是另一段绳子,可以再次对折去跟另一段绳子串连。每次串连后,原来两段绳子的长度就会减半。

rope.jpg

给定 N 段绳子的长度,你需要找出它们能串成的绳子的最大长度。

输入格式

每个输入包含 1 个测试用例。每个测试用例第 1 行给出正整数 N (2≤N≤104);第 2 行给出 N 个正整数,即原始绳段的长度,数字间以空格分隔。所有整数都不超过104。

输出格式:

在一行中输出能够串成的绳子的最大长度。结果向下取整,即取为不超过最大长度的最近整数

输入样例:

8
10 15 12 3 4 13 1 15

结尾无空行

输出样例:

14

结尾无空行

 思路:题目可能一开始读起来没什么想法,但多读几遍其实还挺容易理解的,他要求的是最大的长度,由于每次绳子都要对折,那么如果先对折长度长的那么损失很很大,最后的长度肯定不是最长的,所以我们要先把这些长度按从小到大的顺序排列好,先对折短的,再对折长的,就能解决了。

 代码:

n = int(input())
x = [int(a) for a in input().split()]
x.sort()
sum = 0
sum = (x[0]+x[1])//2
for i in range(2,len(x)):
    sum = (sum + x[i])//2
print(sum)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值