给定一段一段的绳子,你需要把它们串成一条绳。每次串连的时候,是把两段绳子对折,再如下图所示套接在一起。这样得到的绳子又被当成是另一段绳子,可以再次对折去跟另一段绳子串连。每次串连后,原来两段绳子的长度就会减半。
给定 N 段绳子的长度,你需要找出它们能串成的绳子的最大长度。
输入格式:
每个输入包含 1 个测试用例。每个测试用例第 1 行给出正整数 N (2≤N≤104);第 2 行给出 N 个正整数,即原始绳段的长度,数字间以空格分隔。所有整数都不超过104。
输出格式:
在一行中输出能够串成的绳子的最大长度。结果向下取整,即取为不超过最大长度的最近整数。
输入样例:
8
10 15 12 3 4 13 1 15
结尾无空行
输出样例:
14
结尾无空行
思路:题目可能一开始读起来没什么想法,但多读几遍其实还挺容易理解的,他要求的是最大的长度,由于每次绳子都要对折,那么如果先对折长度长的那么损失很很大,最后的长度肯定不是最长的,所以我们要先把这些长度按从小到大的顺序排列好,先对折短的,再对折长的,就能解决了。
代码:
n = int(input())
x = [int(a) for a in input().split()]
x.sort()
sum = 0
sum = (x[0]+x[1])//2
for i in range(2,len(x)):
sum = (sum + x[i])//2
print(sum)