题目背景
NOIP2016 提高组 D2T2
题目描述
本题中,我们将用符号 ⌊c⌋ 表示对 c 向下取整,例如:⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3。
蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓。
蛐蛐国里现在共有 n 只蚯蚓(n 为正整数)。每只蚯蚓拥有长度,我们设第 i 只蚯蚓的长度为 ai(i=1,2,…,n),并保证所有的长度都是非负整数(即:可能存在长度为 0 的蚯蚓)。
每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半。神刀手切开蚯蚓的位置由常数 p(是满足 0<p<1 的有理数)决定,设这只蚯蚓长度为 x,神刀手会将其切成两只长度分别为 ⌊px⌋ 和 x−⌊px⌋ 的蚯蚓。特殊地,如果这两个数的其中一个等于 0,则这个长度为 0 的蚯蚓也会被保留。此外,除了刚刚产生的两只新蚯蚓,其余蚯蚓的长度都会增加 q(是一个非负整常数)。
蛐蛐国王知道这样不是长久之计,因为蚯蚓不仅会越来越多,还会越来越长。蛐蛐国王决定求助于一位有着洪荒之力的神秘人物,但是救兵还需要 m 秒才能到来……(m 为非负整数)
蛐蛐国王希望知道这 m 秒内的战况。具体来说,他希望知道:
- m 秒内,每一秒被切断的蚯蚓被切断前的长度(有 m 个数);
- m 秒后,所有蚯蚓的长度(有 n+m 个数)。
蛐蛐国王当然知道怎么做啦!但是他想考考你……
输入格式
第一行包含六个整数 n,m,q,u,v,t,其中:n,m,q 的意义见【问题描述】;u,v,t 均为正整数;你需要自己计算 p=u/v(保证 0<u<v);t 是输出参数,其含义将会在【输出格式】中解释。
第二行包含 n 个非负整数,为 a1,a2,…,an,即初始时 n 只蚯蚓的长度。
同一行中相邻的两个数之间,恰好用一个空格隔开。
保证 1≤n≤105,0≤m≤7×106,0<u<v≤109,0≤q≤200,1≤t≤71,0≤ai≤108。
输出格式
第一行输出 ⌊tm⌋ 个整数,按时间顺序,依次输出第 t 秒,第 2t 秒,第 3t 秒,……被切断蚯蚓(在被切断前)的长度。
第二行输出 ⌊tn+m⌋ 个整数,输出 m 秒后蚯蚓的长度;需要按从大到小的顺序,依次输出排名第 t,第 2t,第 3t,……的长度。
同一行中相邻的两个数之间,恰好用一个空格隔开。即使某一行没有任何数需要输出,你也应输出一个空行。
请阅读样例来更好地理解这个格式。
输入输出样例
输入 #1复制
3 7 1 1 3 1 3 3 2
输出 #1复制
3 4 4 4 5 5 6 6 6 6 5 5 4 4 3 2 2
输入 #2复制
3 7 1 1 3 2 3 3 2
输出 #2复制
4 4 5 6 5 4 3 2
输入 #3复制
3 7 1 1 3 9 3 3 2
输出 #3复制
//空行 2
说明/提示
样例解释 1
在神刀手到来前:3 只蚯蚓的长度为 3,3,2。
1 秒后:一只长度为 3 的蚯蚓被切成了两只长度分别为1 和 2 的蚯蚓,其余蚯蚓的长度增加了 1。最终 4 只蚯蚓的长度分别为 (1,2),4,3。括号表示这个位置刚刚有一只蚯蚓被切断。
2 秒后:一只长度为 4 的蚯蚓被切成了 1 和 3。5 只蚯蚓的长度分别为:2,3,(1,3),4。
3 秒后:一只长度为 4 的蚯蚓被切断。6 只蚯蚓的长度分别为:3,4,2,4,(1,3)。
4 秒后:一只长度为 4 的蚯蚓被切断。7 只蚯蚓的长度分别为:4,(1,3),3,5,2,4。
5 秒后:一只长度为 5 的蚯蚓被切断。8 只蚯蚓的长度分别为:5,2,4,4,(1,4),3,5。
6 秒后:一只长度为 5 的蚯蚓被切断。9 只蚯蚓的长度分别为:(1,4),3,5,5,2,5,4,6。
7 秒后:一只长度为 6 的蚯蚓被切断。10 只蚯蚓的长度分别为:2,5,4,6,6,3,6,5,(2,4)。所以,7 秒内被切断的蚯蚓的长度依次为 3,4,4,4,5,5,6。7 秒后,所有蚯蚓长度从大到小排序为 6,6,6,5,5,4,4,3,2,2。
样例解释 2
这个数据中只有 t=2 与上个数据不同。只需在每行都改为每两个数输出一个数即可。
虽然第一行最后有一个 6 没有被输出,但是第二行仍然要重新从第二个数再开始输出。
样例解释 3
这个数据中只有 t=9 与上个数据不同。
注意第一行没有数要输出,但也要输出一个空行。
代码实现:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// 使用三个队列维护不同阶段的蚯蚓
queue<ll> originalQueue; // 原始蚯蚓队列
queue<ll> leftQueue; // 切割后的左段队列
queue<ll> rightQueue; // 切割后的右段队列
// 比较函数:降序排序
bool compareDescending(ll a, ll b) {
return a > b;
}
int main() {
ll initialWorms, seconds, growthRate, numerator, denominator, outputStep;
scanf("%lld%lld%lld%lld%lld%lld",
&initialWorms, &seconds, &growthRate, &numerator, &denominator, &outputStep);
// 读取初始蚯蚓长度并排序
vector<ll> initialLengths(initialWorms + 1);
for (ll i = 1; i <= initialWorms; i++) {
scanf("%lld", &initialLengths[i]);
}
sort(initialLengths.begin() + 1, initialLengths.end(), compareDescending);
// 将排序后的初始蚯蚓加入队列
for (ll i = 1; i <= initialWorms; i++) {
originalQueue.push(initialLengths[i]);
}
// 模拟m秒的切割过程
vector<ll> cutLengths; // 存储每一秒被切割的蚯蚓长度
for (ll currentTime = 1; currentTime <= seconds; currentTime++) {
ll maxLength = LLONG_MIN; // 初始化为极小值
int queueIndex = 0; // 记录最大值来自哪个队列
// 找出当前最长的蚯蚓
if (!originalQueue.empty() && originalQueue.front() > maxLength) {
maxLength = originalQueue.front();
queueIndex = 1;
}
if (!leftQueue.empty() && leftQueue.front() > maxLength) {
maxLength = leftQueue.front();
queueIndex = 2;
}
if (!rightQueue.empty() && rightQueue.front() > maxLength) {
maxLength = rightQueue.front();
queueIndex = 3;
}
// 从相应队列中弹出最长的蚯蚓
if (queueIndex == 1) originalQueue.pop();
else if (queueIndex == 2) leftQueue.pop();
else if (queueIndex == 3) rightQueue.pop();
// 计算切割前的真实长度(考虑生长)
ll realLength = maxLength + (currentTime - 1) * growthRate;
cutLengths.push_back(realLength);
// 计算切割后的两段长度
ll leftPart = realLength * numerator / denominator;
ll rightPart = realLength - leftPart;
// 将切割后的两段加入队列(减去当前时间的生长量)
leftQueue.push(leftPart - currentTime * growthRate);
rightQueue.push(rightPart - currentTime * growthRate);
}
// 输出第一行:每t秒被切割的蚯蚓长度
for (ll i = 0; i < cutLengths.size(); i++) {
if ((i + 1) % outputStep == 0) {
cout << cutLengths[i] << " ";
}
}
cout << endl;
// 收集所有剩余蚯蚓并排序
vector<ll> finalWorms;
while (!originalQueue.empty()) {
finalWorms.push_back(originalQueue.front() + seconds * growthRate);
originalQueue.pop();
}
while (!leftQueue.empty()) {
finalWorms.push_back(leftQueue.front() + seconds * growthRate);
leftQueue.pop();
}
while (!rightQueue.empty()) {
finalWorms.push_back(rightQueue.front() + seconds * growthRate);
rightQueue.pop();
}
// 降序排序
sort(finalWorms.begin(), finalWorms.end(), greater<ll>());
// 输出第二行:排序后每t个输出一个
for (ll i = 0; i < finalWorms.size(); i++) {
if ((i + 1) % outputStep == 0) {
cout << finalWorms[i] << " ";
}
}
cout << endl;
return 0;
}
数据范围