这是生成模型下面阅读的second paper:
论文地址:[1312.6114] Auto-Encoding Variational Bayes
来源:arXiv:1312.6114v10 [stat.ML] 1 May 2014
参考文章链接:https://zhuanlan.zhihu.com/p/37224492
1 介绍
在涉及如下图所示的包含隐变量的学习和推理问题时,往往会遇到后验概率不可计算的情况,这会导致参数难以学习以及推理难以进行。下边的问题基于下图所示的概率图进行讨论,其中 表示样本集大小,
表示观察变量,
表示隐含变量,生成模型表示为
,
是对
的近似,表示识别模型。
观察变量及隐变量概率图
注:从x到z是inference model(encoder),从z到x是generative model (decoder),对于在生成模型这一部分中是生成模型的后验概率。而对于实际的生成模型中这一后验概率往往是不可计算的,所以需要根据假设分布来进行近似,再利用KL散度来刻画这两个分布的相似度(最小化)。这也是斯坦福Ermon教授的EM[1]----EM[2]-----EM[3]中提到的逐次进行近似刻画。
2 Problem
2.1不可计算问题
如果对概率图所示的随机变量