Second paper:《Auto-encoding Variational Bayes》自编码变分贝叶斯的阅读笔记

这是生成模型下面阅读的second paper:

论文地址:[1312.6114] Auto-Encoding Variational Bayes

来源:arXiv:1312.6114v10 [stat.ML] 1 May 2014

参考文章链接:https://zhuanlan.zhihu.com/p/37224492

1 介绍

在涉及如下图所示的包含隐变量的学习和推理问题时,往往会遇到后验概率不可计算的情况,这会导致参数难以学习以及推理难以进行。下边的问题基于下图所示的概率图进行讨论,其中 N 表示样本集大小, x 表示观察变量, z 表示隐含变量,生成模型表示为 p_{\theta}(z)p_{\theta}(x|z) , q_{\phi}(z|x) 是对 p_{\theta}(z|x) 的近似,表示识别模型。

                                                                              

                                                                  观察变量及隐变量概率图

注:从x到z是inference model(encoder),从z到x是generative model (decoder),对于在生成模型这一部分中p_{\theta}(z|x)是生成模型的后验概率。而对于实际的生成模型中这一后验概率往往是不可计算的,所以需要根据假设分布来进行近似,再利用KL散度来刻画这两个分布的相似度(最小化)。这也是斯坦福Ermon教授的EM[1]----EM[2]-----EM[3]中提到的逐次进行近似刻画。

 

2 Problem

  2.1不可计算问题

如果对概率图所示的随机变量 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值