📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。💡在这个美好的时刻,笔者不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。

ShardingSphere 知识点详解
一、核心分片机制
分片策略
ShardingSphere 提供了多种分片策略,这些策略是构建分布式数据库系统的基础,其核心在于如何将数据分布到不同的分片上。
-
精确分片算法:这种策略基于分片键的唯一性,将数据直接映射到对应的分片。例如,在用户表中,可以根据用户ID进行精确分片,每个分片包含特定范围内的用户数据。
-
范围分片算法:适用于数据范围较大的场景,如时间序列数据。这种策略根据分片键的值范围将数据映射到分片。例如,可以将日志数据按照时间范围分片,每个分片包含特定时间段的日志数据。
-
复合分片算法:结合多个分片键和分片策略,实现更复杂的分片逻辑。例如,在订单表中,可以同时根据用户ID和时间范围进行复合分片,实现用户订单的精细化查询。
-
强制路由策略:允许用户在查询时指定必须路由到的分片,这在某些特定场景下非常有用,例如,当需要保证特定数据的一致性时。
分布式事务
ShardingSphere 支持分布式事务,其核心在于保证跨多个分片的数据一致性。
-
XA事务实现:通过两阶段提交协议,确保分布式事务的原子性。在第一阶段,所有分片都提交事务;在第二阶段,所有分片都确认事务已提交。
-
SeGA事务模型:SeGA(ShardingSphere Global Transaction)是ShardingSphere提出的一种改进的两阶段提交模型,通过减少锁的粒度和优化事务提交过程,提高事务处理的性能。
-
柔性事务补偿:当分布式事务失败时,通过补偿事务来恢复数据的一致性。这种策略适用于对一致性要求不是非常严格的场景。
二、读写分离体系
负载均衡
ShardingSphere 的读写分离功能通过负载均衡策略,提高系统的可用性和性能。
-
权重分配策略:根据不同读写库的性能和负载,动态调整权重,实现负载均衡。
-
故障自动剔除:当读写库出现故障时,自动从负载均衡策略中剔除,保证系统的稳定性。
-
连接池管理:通过连接池管理,优化读写库的连接复用,提高资源利用率。
数据一致性
ShardingSphere 保证数据的一致性,通过以下措施:
-
主从延迟检测:通过监控主从库的数据延迟,确保数据同步。
-
强制主库路由:确保读操作必须从主库读取,保证数据一致性。
-
读写分离+分片组合:结合分片策略和读写分离,实现更复杂的数据处理,如跨分片查询。
三、分布式治理
弹性伸缩
ShardingSphere 支持在线分片变更和数据再平衡,实现弹性伸缩。
-
在线分片变更:在不影响业务的情况下,动态调整分片策略,满足业务需求的变化。
-
数据再平衡:在分片变更后,自动进行数据迁移和重新分配,保证数据均衡分布。
集群管控
ShardingSphere 提供集群管控功能,包括:
-
配置中心集成:集中管理集群配置,方便管理和维护。
-
分布式锁实现:确保集群操作的一致性和安全性。
-
节点状态探活:监控集群节点的状态,保证集群的可用性。
四、数据迁移方案
全量迁移
ShardingSphere 支持全量数据迁移,通过以下步骤实现:
-
一致性校验:确保数据迁移过程中数据的一致性。
-
断点续传:在迁移过程中,如果出现中断,可以从上次中断的地方继续迁移。
-
存量数据切割:将存量数据切割成多个小批量进行迁移,提高迁移效率。
增量同步
ShardingSphere 支持增量数据同步,通过以下步骤实现:
-
Binlog解析:解析数据库的 Binlog,获取增量数据。
-
双写一致性:保证在主库和从库之间数据的一致性。
-
灰度切换验证:在切换到新库之前,进行灰度验证,确保数据迁移的正确性。
五、生态扩展组件
ShardingSphere-Proxy
ShardingSphere-Proxy 是 ShardingSphere 的代理层,提供以下功能:
-
协议适配层:适配不同的数据库协议,如 MySQL、PostgreSQL 等,实现跨数据库的连接和操作。
-
流量治理:根据业务需求,对流量进行治理和优化,提高系统性能。
-
多租户支持:支持多租户隔离,确保数据安全。
ShardingSphere-JDBC
ShardingSphere-JDBC 是 ShardingSphere 的 JDBC 驱动,提供以下功能:
-
连接模式优化:优化数据库连接,提高性能。
-
多数据源聚合:聚合多个数据源,提供统一的访问接口。
-
Hint管理器:管理 SQL 提示,实现特定的数据库操作。
总结
ShardingSphere 是一款强大的分布式数据库中间件,通过核心分片机制、读写分离体系、分布式治理、数据迁移方案和生态扩展组件,实现了数据分布、负载均衡、弹性伸缩、数据一致性和集群管控等功能。ShardingSphere 为分布式数据库提供了全方位的支持,助力企业构建高性能、高可用、易扩展的分布式数据库系统。
📥博主的人生感悟和目标

- 💂 博客主页: Java程序员廖志伟希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
- 👉 开源项目: Java程序员廖志伟
- 🌥 哔哩哔哩: Java程序员廖志伟
- 🎏 个人社区: Java程序员廖志伟
- 🔖 个人微信号:
SeniorRD

📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。这些书籍包括了基础篇、进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码--沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~