ShardingSphere:分布式数据库实践指南

📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。

📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

Java程序员廖志伟

🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。💡在这个美好的时刻,笔者不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。

CSDN

一、核心分片机制

ShardingSphere作为一款高性能、易用的开源分布式数据库中间件,其核心分片机制是其实现数据水平扩展的关键。以下将详细阐述ShardingSphere的核心分片机制,包括分片策略、精确分片算法、范围分片算法、复合分片算法、强制路由策略、分布式事务等。

  1. 分片策略

分片策略是ShardingSphere实现数据水平扩展的基础,它决定了数据如何分布在不同的分片上。ShardingSphere提供了多种分片策略,旨在满足不同业务场景下的数据分布需求。

(1)精确分片:精确分片是根据分片键的值,将数据精确地分配到指定的分片上。这种策略适用于数据量较小,且数据访问频繁的场景。

(2)范围分片:范围分片是根据分片键的值,将数据分配到指定的分片范围内。这种策略适用于数据量较大,且数据访问具有规律性的场景。

(3)复合分片:复合分片结合了精确分片和范围分片,实现更复杂的分片策略。这种策略适用于数据访问具有多种需求,且数据分布较为复杂的场景。

  1. 精确分片算法

精确分片算法根据分片键的值,将数据精确地分配到指定的分片上。ShardingSphere提供了以下精确分片算法:

(1)哈希分片:哈希分片是根据分片键的哈希值,将数据分配到指定的分片上。这种算法简单高效,适用于数据量较大,且数据访问频繁的场景。

(2)线性分片:线性分片是根据分片键的值,将数据线性地分配到指定的分片上。这种算法适用于数据量较小,且数据访问规律性的场景。

  1. 范围分片算法

范围分片算法根据分片键的值,将数据分配到指定的分片范围内。ShardingSphere提供了以下范围分片算法:

(1)最小值分片:最小值分片是根据分片键的最小值,将数据分配到指定的分片上。这种算法适用于数据访问具有明显边界值的特点。

(2)最大值分片:最大值分片是根据分片键的最大值,将数据分配到指定的分片上。这种算法适用于数据访问具有明显边界值的特点。

  1. 复合分片算法

复合分片算法结合了精确分片和范围分片,实现更复杂的分片策略。ShardingSphere提供了以下复合分片算法:

(1)哈希+范围分片:先根据分片键的哈希值进行精确分片,再根据分片键的值进行范围分片。这种算法适用于数据访问具有复杂分布规律的场景。

(2)范围+范围分片:先根据分片键的最小值进行范围分片,再根据分片键的最大值进行范围分片。这种算法适用于数据访问具有复杂分布规律的场景。

  1. 强制路由策略

强制路由策略用于在查询时指定数据必须路由到某个分片。ShardingSphere提供了以下强制路由策略:

(1)强制路由:强制将查询路由到指定的分片。这种策略适用于特定业务场景下的数据访问需求。

(2)强制路由+读写分离:强制将查询路由到指定的分片,并实现读写分离。这种策略适用于读写分离场景下的数据访问需求。

  1. 分布式事务

分布式事务是ShardingSphere实现数据一致性的关键。ShardingSphere支持以下分布式事务模型:

(1)XA事务实现:基于两阶段提交协议,保证分布式事务的一致性。这种模型适用于高一致性要求的场景。

(2)Sega事务模型:基于SAGA协议,将分布式事务分解为多个小事务,提高事务的容错能力。这种模型适用于对一致性要求不高的场景。

(3)柔性事务补偿:在分布式事务失败时,通过补偿机制恢复数据一致性。这种模型适用于对一致性要求不高,且对容错能力有较高要求的场景。

二、读写分离体系

ShardingSphere的读写分离体系通过负载均衡、权重分配策略、故障自动剔除、连接池管理、数据一致性等机制,实现高效的数据读写分离。

  1. 负载均衡

负载均衡将查询请求分配到不同的从库,实现读写分离。ShardingSphere提供了以下负载均衡策略:

(1)轮询:按顺序将查询请求分配到从库。这种策略适用于从库性能均衡的场景。

(2)最少连接:将查询请求分配到连接数最少的从库。这种策略适用于从库性能不均衡的场景。

(3)权重分配:根据从库的权重,将查询请求分配到从库。这种策略适用于从库性能差异较大的场景。

  1. 权重分配策略

权重分配策略根据从库的性能,动态调整从库的权重。ShardingSphere提供了以下权重分配策略:

(1)固定权重:手动设置从库的权重。这种策略适用于从库性能差异较小的场景。

(2)动态权重:根据从库的负载情况,动态调整从库的权重。这种策略适用于从库性能差异较大的场景。

  1. 故障自动剔除

故障自动剔除在从库发生故障时,自动将其从负载均衡策略中剔除。ShardingSphere提供了以下故障自动剔除策略:

(1)心跳检测:定期检测从库的健康状态。这种策略适用于从库故障率较低的场景。

(2)阈值检测:根据从库的负载情况,设置阈值,当从库超过阈值时,自动剔除。这种策略适用于从库故障率较高的场景。

  1. 连接池管理

连接池管理用于管理从库的连接,提高查询效率。ShardingSphere提供了以下连接池管理策略:

(1)固定连接池:预先创建一定数量的连接。这种策略适用于从库连接数相对稳定的场景。

(2)动态连接池:根据从库的负载情况,动态创建和销毁连接。这种策略适用于从库连接数变化较大的场景。

  1. 数据一致性

数据一致性保证在读写分离的情况下,数据的一致性。ShardingSphere提供了以下数据一致性策略:

(1)主从延迟检测:检测主从数据同步的延迟,当延迟超过阈值时,自动切换主从。这种策略适用于主从同步延迟较小的场景。

(2)强制主库路由:强制将写操作路由到主库,保证数据一致性。这种策略适用于对数据一致性要求较高的场景。

  1. 读写分离+分片组合

ShardingSphere支持读写分离与分片机制的组合,实现更高效的数据访问。通过读写分离,可以提高查询性能;通过分片,可以实现数据的水平扩展。

三、分布式治理

ShardingSphere的分布式治理机制通过弹性伸缩、在线分片变更、数据再平衡、资源隔离策略、集群管控等,实现分布式数据库的稳定运行。

  1. 弹性伸缩

弹性伸缩根据业务需求,动态调整分片数量和从库数量,实现资源的合理分配。ShardingSphere提供了以下弹性伸缩策略:

(1)在线分片变更:在不影响业务的情况下,动态调整分片数量。这种策略适用于业务需求变化较大的场景。

(2)数据再平衡:在分片数量发生变化时,动态调整数据分布,保证数据均衡。这种策略适用于数据分布不均的场景。

  1. 资源隔离策略

资源隔离策略将资源进行划分,保证不同业务之间的资源互不影响。ShardingSphere提供了以下资源隔离策略:

(1)配置中心集成:将资源配置集中管理,方便统一分配。这种策略适用于资源管理复杂的场景。

(2)分布式锁实现:保证在资源竞争时,只有一个业务可以访问资源。这种策略适用于资源竞争激烈的场景。

  1. 集群管控

集群管控用于监控和管理分布式数据库集群。ShardingSphere提供了以下集群管控策略:

(1)节点状态探活:定期检测节点状态,确保集群稳定运行。这种策略适用于集群规模较大的场景。

(2)日志统计与分析:收集集群运行日志,分析问题,优化性能。这种策略适用于对集群性能要求较高的场景。

四、数据迁移方案

ShardingSphere提供了全量迁移和增量同步两种数据迁移方案,实现数据迁移的自动化和高效性。

  1. 全量迁移

全量迁移将源数据库的数据完整地迁移到目标数据库。ShardingSphere提供了以下全量迁移方案:

(1)一致性校验:在迁移过程中,校验源数据库和目标数据库的数据一致性。这种策略适用于对数据一致性要求较高的场景。

(2)断点续传:在迁移过程中,如果发生故障,从断点继续迁移。这种策略适用于数据量较大的场景。

(3)存量数据切割:将存量数据切割成小批量,提高迁移效率。这种策略适用于数据量较大的场景。

  1. 增量同步

增量同步将源数据库的新增数据同步到目标数据库。ShardingSphere提供了以下增量同步方案:

(1)Binlog解析:解析源数据库的Binlog,获取新增数据。这种策略适用于对实时性要求较高的场景。

(2)双写一致性:在迁移过程中,保证源数据库和目标数据库的数据一致性。这种策略适用于对数据一致性要求较高的场景。

(3)灰度切换验证:在迁移完成后,进行灰度切换验证,确保数据迁移成功。这种策略适用于对数据迁移成功率要求较高的场景。

五、生态扩展组件

ShardingSphere提供了丰富的生态扩展组件,包括ShardingSphere-Proxy和ShardingSphere-JDBC。

  1. ShardingSphere-Proxy

ShardingSphere-Proxy作为ShardingSphere的代理层,提供以下功能:

(1)协议适配层:支持多种数据库协议,如MySQL、PostgreSQL等。这种策略适用于需要接入多种数据库的场景。

(2)流量治理:根据业务需求,对流量进行治理,如限流、熔断等。这种策略适用于需要控制流量的场景。

(3)多租户支持:支持多租户访问,保证不同租户的数据隔离。这种策略适用于需要实现多租户访问的场景。

  1. ShardingSphere-JDBC

ShardingSphere-JDBC提供以下功能:

(1)连接模式优化:优化连接模式,提高数据库访问效率。这种策略适用于需要提高数据库访问效率的场景。

(2)多数据源聚合:支持连接多个数据源,实现数据聚合。这种策略适用于需要实现数据聚合的场景。

(3)Hint管理器:通过Hint管理器,控制查询路由、分片等行为。这种策略适用于需要控制查询路由、分片等行为的场景。

总结

ShardingSphere通过核心分片机制、读写分离体系、分布式治理、数据迁移方案和生态扩展组件等,实现了分布式数据库的稳定、高效运行。在实际应用中,可以根据业务需求,灵活选择合适的方案,实现数据的一致性、高可用性和可扩展性。

CSDN

📥博主的人生感悟和目标

Java程序员廖志伟

希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!

- 💂 博客主页Java程序员廖志伟
- 👉 开源项目Java程序员廖志伟
- 🌥 哔哩哔哩Java程序员廖志伟
- 🎏 个人社区Java程序员廖志伟
- 🔖 个人微信号SeniorRD

Java程序员廖志伟

📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。这些书籍包括了基础篇进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码--沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!

🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值