💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖
本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】
Sklearn 机器学习:数据聚类与 KMeans 模型聚类分配实战
数据聚类是无监督学习中的核心任务之一,它能帮助我们发掘数据中的隐藏结构,广泛应用于市场细分、图像压缩、异常检测等场景。
本文将带你使用 Sklearn 中的 KMeans
模型完成一次完整的聚类过程,并在训练后对新数据进行聚类分配。我们将结合原理讲解、代码实战、可视化及调优建议,带你从 0 到 1 掌握这一技术。
📌 一、什么是 KMeans 聚类?
KMeans 是一种经典的基于距离的聚类算法,其核心思想是:
-
初始选择 K 个聚类中心;
-
不断迭代以下步骤:
- 将每个样本分配到最近的聚类中心;
- 重新计算每个聚类的中心点(簇内样本的均值);
-
重复直到中心不再发生明显变化或达到最大迭代次数。
💡 默认初始化方法 k-means++
能有效避免纯随机初始化带来的聚类不稳定问题,它通过概率分布选择初始中心点,使初始中心分布更合理。
📘 该算法的目标是最小化每个样本点到其聚类中心的平方距离之和,称为 SSE(Sum of Squared Errors),也叫“组内误差平方和”。
🧪 二、实验数据准备
我们使用 Sklearn 自带的 make_blobs
生成模拟聚类数据,并进行可视化:
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# 设置中文字体与负号显示
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]
plt.rcParams["axes.unicode_minus"] = False
# 生成模拟数据
X, y_true = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=42)
# 可视化原始数据
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.title("原始数据分布")
plt.xlabel