Sklearn 机器学习 数据聚类 使用KMeans模型实现预估

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

Sklearn 机器学习:数据聚类与 KMeans 模型聚类分配实战

数据聚类是无监督学习中的核心任务之一,它能帮助我们发掘数据中的隐藏结构,广泛应用于市场细分、图像压缩、异常检测等场景。

本文将带你使用 Sklearn 中的 KMeans 模型完成一次完整的聚类过程,并在训练后对新数据进行聚类分配。我们将结合原理讲解、代码实战、可视化及调优建议,带你从 0 到 1 掌握这一技术。


📌 一、什么是 KMeans 聚类?

KMeans 是一种经典的基于距离的聚类算法,其核心思想是:

  • 初始选择 K 个聚类中心;

  • 不断迭代以下步骤:

    1. 将每个样本分配到最近的聚类中心;
    2. 重新计算每个聚类的中心点(簇内样本的均值);
  • 重复直到中心不再发生明显变化或达到最大迭代次数。

💡 默认初始化方法 k-means++ 能有效避免纯随机初始化带来的聚类不稳定问题,它通过概率分布选择初始中心点,使初始中心分布更合理。

📘 该算法的目标是最小化每个样本点到其聚类中心的平方距离之和,称为 SSE(Sum of Squared Errors),也叫“组内误差平方和”。


🧪 二、实验数据准备

我们使用 Sklearn 自带的 make_blobs 生成模拟聚类数据,并进行可视化:

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# 设置中文字体与负号显示
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]
plt.rcParams["axes.unicode_minus"] = False

# 生成模拟数据
X, y_true = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=42)

# 可视化原始数据
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.title("原始数据分布")
plt.xlabel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值