Sklearn 机器学习 数据聚类 评价指标之WCSS

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

Sklearn 机器学习:数据聚类评价指标之 WCSS

在进行无监督学习中的聚类分析(如 KMeans)时,如何评估聚类效果是一个重要话题。WCSS(Within-Cluster Sum of Squares)是最常见、最基础的聚类性能度量指标之一。

本文将系统介绍 WCSS 的含义、计算方式、在 Sklearn 中的应用及可视化方法,帮助你更好地理解和应用聚类模型。


📌 一、什么是 WCSS?

WCSS 全称为 Within-Cluster Sum of Squares,中文翻译为 “簇内误差平方和”(又称 “组内平方和”),它是聚类分析中衡量“簇内紧凑程度”的经典指标。

数学定义

W C S S = ∑ i = 1 k ∑ x ∈ C i ∥ x − μ i ∥ 2 WCSS = \sum_{i=1}^{k} \sum_{x \in C_i} \|x - \mu_i\|^2 WCSS=i=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值