💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖
本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】
Sklearn 机器学习:数据聚类评价指标之 WCSS
在进行无监督学习中的聚类分析(如 KMeans)时,如何评估聚类效果是一个重要话题。WCSS(Within-Cluster Sum of Squares)是最常见、最基础的聚类性能度量指标之一。
本文将系统介绍 WCSS 的含义、计算方式、在 Sklearn 中的应用及可视化方法,帮助你更好地理解和应用聚类模型。
📌 一、什么是 WCSS?
WCSS 全称为 Within-Cluster Sum of Squares,中文翻译为 “簇内误差平方和”(又称 “组内平方和”),它是聚类分析中衡量“簇内紧凑程度”的经典指标。
数学定义
W C S S = ∑ i = 1 k ∑ x ∈ C i ∥ x − μ i ∥ 2 WCSS = \sum_{i=1}^{k} \sum_{x \in C_i} \|x - \mu_i\|^2 WCSS=i=