TensorFlow 深度学习 | 使用底层 API 实现模型训练(附可视化与 MLP)

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

TensorFlow 深度学习 | 使用底层 API 实现模型训练(附可视化与 MLP)

在 TensorFlow 中,除了使用 SequentialFunctional API 来快速搭建模型外,我们还可以通过 底层 API 手动实现模型训练过程。这种方式适合:

  • 理解梯度下降与参数更新机制
  • 定制化训练流程(例如 GAN、强化学习等场景)
  • 逐步过渡到更复杂的深度学习应用

本文分为两部分:

  1. 使用底层 API 实现 逻辑回归
  2. 扩展为 多层感知机(MLP)+ Mini-Batch 训练

📌 一、数据准备

我们生成一个二维数据集用于二分类。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 设置随机种子保证结果可复现
tf.random.set_seed(42)

# 生成数据:1000 个样本,每个样本 2 个特征
X = tf.random.normal(shape=(1000, 2))
# 构造标签:线性分隔
y = tf.cast(X[:, 0] + X[:, 1] > 0, tf.float32)

可视化数据分布:

plt.scatter(X[:, 0], X[:, 1], c=y, cmap="bwr", alpha=0.7)
plt.title("数据分布")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()

📌 二、逻辑回归模型(回顾)

我们先实现一个 逻辑回归模型

# 参数定义
w = tf.Variable(tf.random.normal([2, 1]))
b = tf.Variable(tf.zeros
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值