📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。💡在这个美好的时刻,笔者不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。

【# ShardingSphere 知识体系深度解析
一、核心分片机制
分片策略
ShardingSphere 的核心分片机制是构建分布式数据库架构的核心。分片策略直接决定了数据如何在不同的数据库节点之间分配,这一过程涉及复杂的数据分布逻辑。
精确分片算法
精确分片算法根据数据键值直接映射到特定的分片上。例如,哈希分片通过计算键值的哈希值来确定数据应该存储在哪个分片。这种策略适用于键值唯一且访问频率较高的情况,因为它能够保证数据的均匀分布和快速的访问。
范围分片算法
范围分片算法则是根据数据的范围值进行分片,如时间范围分片。这种策略适用于需要按时间顺序访问数据的场景,例如日志记录。范围分片算法通过定义起始和结束键值来指定数据的存储范围。
复合分片算法
复合分片算法结合了多种策略进行分片。例如,可以结合哈希分片和范围分片,首先根据哈希值确定分片,然后在特定分片内根据范围值进一步细分。这种策略提供了更大的灵活性,适用于更复杂的数据分布需求。
强制路由策略
在分布式数据库中,强制路由策略确保查询请求被路由到正确的分片。
精确分片路由
精确分片路由直接根据精确分片算法路由到特定分片。这种策略简单高效,适用于数据量不大且键值分布均匀的场景。
范围分片路由
范围分片路由根据数据范围路由到对应的分片。这种策略适用于需要按范围查询的场景,例如查询特定时间段内的数据。
复合分片路由
复合分片路由根据复合分片算法路由到多个分片。这种策略适用于需要同时根据多个维度查询的场景。
分布式事务
分布式事务是实现数据一致性的关键。
XA事务实现
XA事务是基于 XA 协议的分布式事务,支持两阶段提交。它通过在数据库中嵌入事务管理器来协调不同分片上的事务。
Sega事务模型
ShardingSphere 自有的 Sega 事务模型简化了 XA 事务的使用。它通过将事务拆分为多个小事务来降低复杂性,并提供了更简单的编程模型。
柔性事务补偿
柔性事务补偿在分布式环境下,当事务失败时,通过补偿机制恢复数据一致性。这种策略适用于不能容忍长时间的事务等待的场景。
二、读写分离体系
负载均衡
读写分离通过将读操作分散到多个从库上,从而提高数据库的吞吐量。
权重分配策略
权重分配策略根据从库的负载情况分配权重,确保请求均匀地分散到各个从库。
故障自动剔除
故障自动剔除当从库发生故障时,自动将其从负载均衡中剔除,防止请求发送到已失效的从库。
连接池管理
连接池管理优化连接使用效率,减少连接建立和销毁的开销。
数据一致性
为了保证数据的一致性,ShardingSphere 提供以下机制。
主从延迟检测
主从延迟检测检测主从库之间的数据同步延迟,确保数据一致性。
强制主库路由
强制主库路由确保读操作始终路由到主库,保证数据一致性。
读写分离+分片组合
将读写分离与分片策略结合,提高系统性能,同时保证数据一致性。
三、分布式治理
弹性伸缩
弹性伸缩是应对业务波动的重要策略。
在线分片变更
在线分片变更在不影响业务的情况下,动态调整分片策略,适应业务变化。
数据再平衡
数据再平衡根据负载情况,动态调整数据分布,优化资源利用率。
资源隔离策略
资源隔离策略隔离不同业务的数据和资源,提高资源利用率。
集群管控
集群管控是保证系统稳定运行的关键。
配置中心集成
配置中心集成集中管理配置,提高配置的统一性和安全性。
分布式锁实现
分布式锁保证集群中资源的互斥访问,防止并发冲突。
节点状态探活
节点状态探活监控集群中各个节点的状态,确保集群的健康。
四、数据迁移方案
全量迁移
全量迁移是将数据从源数据库迁移到目标数据库的过程。
一致性校验
一致性校验确保迁移后的数据与源数据一致,防止数据丢失或损坏。
断点续传
断点续传支持断点续传,提高迁移效率,减少迁移时间。
存量数据切割
存量数据切割将存量数据切割成小块,分批次迁移,减少迁移过程中的压力。
增量同步
增量同步是保证数据实时性的关键。
Binlog解析
Binlog解析获取数据变更信息,实现增量数据的实时同步。
双写一致性
双写一致性在源数据库和目标数据库上同时写入数据,确保数据一致性。
灰度切换验证
灰度切换验证在切换到新数据库之前,进行灰度验证,确保切换过程平稳。
五、生态扩展组件
ShardingSphere-Proxy
ShardingSphere-Proxy 是 ShardingSphere 的代理层。
协议适配层
协议适配层支持多种数据库协议,如 MySQL、PostgreSQL 等,提供统一的接口。
流量治理
流量治理根据业务需求,对流量进行治理,优化系统性能。
多租户支持
多租户支持支持多租户隔离,确保数据安全。
ShardingSphere-JDBC
ShardingSphere-JDBC 是 ShardingSphere 的 JDBC 层。
连接模式优化
连接模式优化优化连接模式,提高连接效率。
多数据源聚合
多数据源聚合支持多数据源聚合,实现数据整合。
Hint管理器
Hint管理器管理数据库 hint,实现特定的数据库操作。
通过以上对 ShardingSphere 相关知识点的详细解析,我们可以了解到 ShardingSphere 在分布式数据库架构中的应用和优势。ShardingSphere 通过其核心分片机制、读写分离体系、分布式治理、数据迁移方案和生态扩展组件,为构建高性能、高可用、可扩展的分布式数据库系统提供了强有力的支持。】
📥博主的人生感悟和目标

- 💂 博客主页: Java程序员廖志伟希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
- 👉 开源项目: Java程序员廖志伟
- 🌥 哔哩哔哩: Java程序员廖志伟
- 🎏 个人社区: Java程序员廖志伟
- 🔖 个人微信号:
SeniorRD

📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。这些书籍包括了基础篇、进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码--沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~