📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)清华大学出版社签约作家、Java领域优质创作者、CSDN博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。💡在这个美好的时刻,笔者不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。

一、核心分片机制
分片策略
ShardingSphere的核心分片机制是实现分布式数据库架构的关键,它通过将数据分散存储到多个数据库节点上,实现了数据水平扩展。分片策略是数据分布的基础,决定了数据如何被分配到不同的分片上。
精确分片算法
精确分片算法基于分片键的值直接映射到具体的分片。在实现上,通常会采用哈希函数来确保分片键的值均匀地分布在各个分片上。例如,可以使用MD5或SHA-1等哈希算法,将分片键的值转换为一个哈希码,然后根据哈希码的值来决定数据所属的分片。
范围分片算法
范围分片算法适用于分片键具有连续性或有序性的场景。在实现时,可以根据分片键的值定义一系列的范围,每个范围对应一个分片。例如,对于时间序列数据,可以根据时间戳的区间来划分分片。
复合分片算法
复合分片算法结合了多种分片策略,如范围分片和精确分片,以满足复杂的分片需求。在实现上,可以通过组合不同的分片键和分片策略来定义分片规则。
强制路由策略
强制路由策略允许在查询时直接指定要访问的分片,这在某些特定场景下非常有用,例如避免跨分片查询的性能损耗。在ShardingSphere中,可以通过在查询语句中添加特定的路由标识来实现强制路由。
分布式事务
分布式事务的保证是分布式数据库系统的关键,ShardingSphere提供了多种分布式事务解决方案。
XA事务实现
XA事务是一种两阶段提交协议,用于保证分布式事务的原子性。ShardingSphere通过实现XA接口,与数据库的XA事务管理器进行交互,从而支持XA事务。
Sega事务模型
Seata是一个开源的分布式事务解决方案,ShardingSphere通过集成Seata,提供了更为灵活的事务管理。在实现上,ShardingSphere将事务的提交和回滚操作委托给Seata进行处理。
柔性事务补偿
当分布式事务失败时,柔性事务补偿机制可以通过一系列补偿操作来恢复数据的一致性。在实现上,通常会定义一系列的补偿策略和操作,以应对事务失败的情况。
二、读写分离体系
负载均衡
负载均衡是读写分离体系的核心,它通过将读请求均匀地分发到多个从库上,提高系统整体性能。在实现上,可以使用轮询、最少连接、响应时间等策略来进行负载均衡。
权重分配策略
权重分配策略决定了读请求在从库之间的分发比例。在实现上,可以根据从库的性能、负载或响应时间等因素动态调整权重。
故障自动剔除
当从库出现故障时,负载均衡器需要能够自动将其剔除。在实现上,可以通过心跳检测、健康检查等机制来监控从库的状态,并在检测到故障时将其从负载均衡器中移除。
连接池管理
连接池管理负责管理数据库连接的生命周期,包括连接的创建、回收和复用。在实现上,可以使用线程池和对象池等技术来管理连接池。
数据一致性
数据一致性是读写分离体系的核心目标。在实现上,可以通过主从复制、同步复制、异步复制等技术来保证数据的一致性。
读写分离+分片组合
将读写分离与分片结合,可以实现更复杂的数据库架构。在实现上,需要考虑如何处理跨分片的写操作和跨分片的读操作,以及如何保证数据的一致性。
三、分布式治理
弹性伸缩
弹性伸缩是分布式治理的关键,ShardingSphere支持在线分片变更和数据再平衡,以适应业务增长或系统调整。在实现上,可以通过动态调整分片规则和节点配置来实现弹性伸缩。
资源隔离策略
资源隔离策略确保不同分片或租户之间的资源不受干扰,提高系统的稳定性和安全性。在实现上,可以通过资源标签、资源配额、资源隔离区等技术来实资源隔离。
集群管控
集群管控涉及配置中心集成、分布式锁实现和节点状态探活等方面,以确保集群内各个节点的协同工作。在实现上,可以使用Zookeeper、Consul等配置中心来管理集群配置,使用Redis等工具来实现分布式锁,使用心跳检测来探活节点状态。
四、数据迁移方案
全量迁移
全量迁移是指将所有数据从一个数据库迁移到另一个数据库的过程。在实现上,可以使用数据同步工具、数据迁移引擎等来批量导出和导入数据,同时需要保证数据的一致性和完整性。
增量同步
增量同步是指只同步新增或变更的数据。在实现上,可以通过解析数据库的Binlog或Change Data Capture (CDC)来获取数据变更信息,并同步到目标数据库。
五、生态扩展组件
ShardingSphere-Proxy
ShardingSphere-Proxy是一个高性能、可插拔的数据库代理,提供协议适配层、流量治理和多租户支持等功能。在实现上,它通过拦截数据库请求,对请求进行解析、路由和处理,然后再转发到相应的数据库节点。
ShardingSphere-JDBC
ShardingSphere-JDBC是一个易于使用的JDBC驱动,提供连接模式优化、多数据源聚合和Hint管理器等功能。在实现上,它通过封装JDBC接口,实现了对分片、读写分离等功能的抽象和封装。
通过以上技术实现细节的补充,我们可以更深入地理解ShardingSphere在分布式数据库领域的解决方案,为开发者提供构建高性能、高可用分布式数据库系统的强大工具。
📥博主的人生感悟和目标

- 💂 博客主页: Java程序员廖志伟希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
- 👉 开源项目: Java程序员廖志伟
- 🌥 哔哩哔哩: Java程序员廖志伟
- 🎏 个人社区: Java程序员廖志伟
- 🔖 个人微信号:
SeniorRD

📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。这些书籍包括了基础篇、进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码--沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~