三勾软件外卖点餐小程序源码,源代码开源分享

这是一套包含堂食扫码点餐、外卖配送订单等功能的外卖点餐小程序源码,基于thinkphp6、element-ui和uniapp开发。支持多门店和多种配送方式,适用于餐饮、生鲜等行业,可发布到多个平台小程序及移动端。推荐的部署环境为Linux+Nginx+PHP7.1-7.3+MySQL5.6,可使用宝塔集成环境进行快速部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一套外卖点餐小程序源码  点餐小程序源码   外卖小程序源码   ;亲测带本地部署搭建文档。

特点功能:堂食扫码点餐,店内排号取餐,外卖配送订单等应用功能。多门店支持,支持商家自己配送,达达配送,顺丰同城配送,适合餐饮小吃行业,水果生鲜门店,服装护肤行业,零食百货,超市等。

项目介绍

三勾点餐系统基于thinkphp6+element-ui+uniapp打造的面向开发的小程序商城,方便二次开发或直接使用,可发布到多端,包括微信小程序、微信公众号、QQ小程序、支付宝小程序、字节跳动小程序、百度小程序、android端、ios端。

小程序截图

9c8ca1a0db8501d59edbfcf877a0c9d3.jpegfaaa1920f87989cf8d87ff598d83e4b0.jpegc01ae125d4ae539ab5bcd4343db1d8c5.jpegb89990be39d389dd0397ccc73990a1d9.jpeg5506f9e2acdd3b81c0a91254bf693e13.jpeg542413bd21dc8e2058f184efc1eeb095.jpeg

后台截图

34cb13a4ce10cb014c27542394003f96.jpeg4690b5ba6e0f06067bbb999891d1eb09.jpeg22718a6661db21396e3d3092d42515bb.jpeg36d63f1c142a7c1e5a3e481500691790.jpeg8fe7bfeffeb8dbd15f8ce4d0ffe269f9.jpeg02c8312345e1dd45545c4c7147f68438.jpeg

收银台截图

cbffa492592e182ed6715d14fbc7b164.jpeg6cbb4d8a950904fde52ff5bb56344577.jpeg6e00eeed9ea4a62aa4939b11b94fa49d.jpeg

软件架构

后端:thinkphp6 管理端页面:element-ui 小程序端:uniapp。

部署环境建议:Linux + Nginx + PHP7.1-7.3 + MySQL5.6,上手建议直接用宝塔集成环境。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Javashop_jjj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值