L3-001 凑零钱 (30分) c++ dfs()

该博客介绍了一个关于在火星店购物的找零问题,韩梅梅需要确定能否用不同星球的硬币精确支付款项。题目要求不找零且不能欠债,通过深度优先搜索(DFS)策略,对所有可能的硬币组合进行尝试,找出是否存在满足条件的硬币序列。当所有硬币的面值之和小于目标金额时,表明无法支付。C++代码展示了如何实现这一搜索过程,包括排序硬币面值和递归查找解决方案。若找不到解,则输出NoSolution。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有 10^4枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。

输入格式

输入第一行给出两个正整数:N(≤104)是硬币的总个数,M(≤102)是韩梅梅要付的款额。第二行给出 N 枚硬币的正整数面值。数字间以空格分隔。

输出格式

在一行中输出硬币的面值 V1≤V2≤⋯≤Vk ,满足条件 V1 +V2 +…+Vk =M。数字间以 1 个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出 No Solution。

注:我们说序列{ A[1],A[2],⋯ }比{ B[1],B[2],⋯ }“小”,是指存在 k≥1 使得 A[i]=B[i] 对所有 i<k 成立,并且 A[k]<B[k]。

输入样例1
8 9
5 9 8 7 2 3 4 1
输出样例1
1 3 5
输入样例2
4 8
7 2 4 3
输出样例2
No Solution

分析

最基本dfs搜索,把所有比值输入进去后sort()函数进行排序,然后找到的第一组等于金额的解一定是最优解。

C++ 代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
int n,m,f;  //f用来表示是否找到并输出最优解
int coin[N];
void dfs(int u,int sum,vector<int>& path)
{
    if(sum==m)
    {
        for(int i=0;i<path.size();i++)
        {    
            if(i) cout<<" ";
            cout<<path[i];
        }
        f=1;
        return ;
    }
    if(u>=n || sum>m || f) return ;
    path.push_back(coin[u]);
    dfs(u+1,sum+coin[u],path);
    path.pop_back();
    dfs(u+1,sum,path);
    return ;
}
int main()
{
    scanf("%d%d",&n,&m);
    int sum=0;
    for(int i=0;i<n;i++)
    {
        scanf("%d",&coin[i]);
        sum+=coin[i];
    }
    if(sum<m)   //如果所有币值和都小于目标的话,说明一定支付不起
    {
        puts("No Solution");
        return 0;
    }
    sort(coin,coin+n);
    vector<int> temp;
    dfs(0,0,temp);  //对路径进行存储
    if(!f) puts("No Solution"); 
    return 0;
}
### L3-001 零钱问题的 Python 解决方案 以下是基于动态规划方法实现的一个标准解法,用于解决零钱问题。此算法的核心在于通过构建一个数组 `dp` 来记录达到某个金额所需的最少硬币数量。 #### 动态规划核心逻辑 为了找到最小硬币组合的数量,可以定义状态转移方程如下: 设 `coins` 是可用的硬币面额列表,目标金额为 `amount`,则可以通过以下方式计算最优解: \[ dp[i] = \min(dp[i], dp[i - coin] + 1) \] 其中 \( dp[i] \) 表示组成金额 \( i \) 所需的最少硬币数[^2]。 下面是完整的 Python 实现代码: ```python def min_coins(coins, amount): # 初始化 dp 数组,大小为 amount+1 并填充为无穷大 dp = [float(&#39;inf&#39;)] * (amount + 1) # 当金额为 0 时,所需硬币数为 0 dp[0] = 0 # 遍历每一种可能的目标金额 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float(&#39;inf&#39;): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[amount] if dp[amount] != float(&#39;inf&#39;) else -1 # 测试用例 if __name__ == "__main__": coins = list(map(int, input().split())) # 输入硬币种类 amount = int(input()) # 输入目标金额 result = min_coins(coins, amount) print(result) ``` 上述代码实现了动态规划的思想来求解最小硬币数目问题。如果无法恰好成指定金额,则返回 `-1` 表明无解。 #### 关键点解析 1. **初始化**:创建长度为 `amount + 1` 的数组并设置初始值为正无穷大 (`float(&#39;inf&#39;)`),表示尚未找到任何有效路径到达这些金额。 2. **边界条件处理**:当金额等于 0 时,不需要任何硬币即可满足需求,因此设定 `dp[0]=0`。 3. **双重循环更新 DP 值**:外层遍历所有可能的目标金额;内层尝试使用当前可选的所有硬币进行匹配,并不断优化已知的最佳结果。 4. **最终判断**:若经过全部迭代后仍未能降低至有限数值,则说明不存在合法解,应输出特殊标记(如这里采用的是 `-1`)。 #### 时间复杂度析 该算法的时间复杂度主要取决于两重嵌套循环结构——即对于每一个金额都要逐一考察所有的硬币选项。假设共有 m 种不同类型的硬币以及最大金额为 n ,那么整体时间开销大致为 O(m × n)---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_fearless

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值