Matlab为图像添加噪声

本文详细介绍了如何使用MATLAB在图像上添加高斯噪声、泊松噪声和椒盐噪声,并对比了不同噪声类型在图像上的视觉效果。同时,通过Python绘制了图像的直方图,进一步分析了噪声对图像的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

img=imread('D:/pattern.jpg');
imshow(img);

  • 添加高斯噪声
>> img_gaussian=imnoise(img, 'gaussian' , 0, 0.02 ); #均值为0,方差为0.02
>> imshow(img_gaussian);

  • 添加泊松噪声
>> img_poisson=imnoise(img, 'poisson' );
>> imshow(img_poisson);

  • 添加椒盐噪声
>> img_salt=imnoise(img, 'salt & pepper' , 0.02 );
>> imshow(img_salt);

总结:
在噪声密度方面,高斯噪声在图像上的表现和泊松噪声密度分布相似,属于密集分布型,噪点之间呈一定程度的混叠,而椒盐噪声分布较稀疏,噪点各自独立。
在噪声强度方面,由其对应的残差图白色像素亮度可知,椒盐噪声噪点最亮,强度最高,高斯噪声次之,早点较模糊,泊松噪声强度较低,纹理图中白色像素几乎不可见。
 

补充:python绘制图像的直方图

import cv2    
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("gaussian.jpg")
img=img.flatten()
n, bins, patches = plt.hist(img, bins=256, density=1, facecolor='green', alpha=0.75)

plt.show()

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值