可以直接到Python的官方网站www.python.org下载安装python。Python版本有2.x和3.x两个系列,两个系列为并行关系,并不完全兼容,现在似乎3.x系列使用的更多些。下载时注意有32位、64位以及不同的平台版本。安装时3.x可以自动设置相关的环境变量,安装后使用更为方便。
Python安装后可以使用其官方的集成开发环境idle进行程序开发。Python的官方开发环境更像一个命令窗口环境+文本编辑器,在命令窗口中可以直接执行Python语句,而文本编辑器则用于Python程序书写。
安装附加的包在cmd窗口中采用工具pip install xxx进行。Python有很多的第三方工具包和内建包可以使用,这些包使有关的开发工作变得更为简单。
常用的开发工具包有如下一些:
- 网页和爬虫类工具包
- bs4
- requests
- lxml
- 数据分析类工具包
- NumPy,http://numpy.org。Numerical Python的缩写,提供多种数据结构、算法及大部分涉及Python述职计算所需要的接口。如:快速、高效的多维数组对象ndarray;基于元素的数组计算或数组间数学操作函数;用于读写营盘中基于数组的数据集的工具;线性代数操作、傅里叶变换以及随机数生成;成熟的C语言API,允许Python拓展和本地的C或C++代码访问NumPy的数据结构和计算设施
- pandas,http://pandas.py-da_ta.org。提供了高级数据结构和函数,使得利用结构化、表格化数据的工作快速、简单、有表现力,如DataFrame对象。
- matplotlib,http://mataplotlib.org。流行的用于制图及其他二维数据可视化的Python库。
- SciPy,http://scipy.org。科学计算领域针对不同标准问题域的包机和。如:scipy.integrate为数值积分例程和微分方程求解器;scipy.linalg为线性代数例程和基于numpy.linalg的矩阵分解;scipy.optimize为函数优化器和求根算法;scipy.signal为信号处理工具;scipy.sparse为稀疏矩阵线性系统求解器;scipy.stats标准的连续和离散概率分布、各类统计测试等。
- scikit-learn,http://scikit-learn.org。机器学习工具包,如分类、回归、聚类、降维等。
- statsmodels,http://statsmodels.org。统计分析包。