AI时代普通人逆袭之路开篇:部署DeekSeek大模型
玩 AI 模型必看!用 Ollama 轻松驾驭 DeepSeek,图形界面 + API 调用全掌握,MacMini M4丐版部署Deepseek大模型
宝子们,今天给大家带来一篇超实用的 AI 模型部署攻略!就算你用的是 MacMini M4 丐版,也能轻松驾驭 DeepSeek 大模型,实现图形化界面交互和 API 调用,赶紧来康康吧!
1. 安装 Ollama
首先,咱们得把 Ollama 安装上。这玩意儿可是让 AI 模型跑起来的关键一步。打开终端,输入以下命令:
curl -fsSL https://ollama.com/install.sh | sh
安装完成后,用 ollama --version
命令验证一下。如果能看到 Ollama 的版本号,那就说明安装成功啦!是不是超简单?
2. 下载 DeepSeek 模型
有了 Ollama,接下来就得把 DeepSeek 模型拉过来。在终端输入:
ollama pull deepseek-r1
如果你想要更小的模型版本,可以指定模型大小,比如:
ollama pull deepseek-r1:1.5b
或者用量化版本来节省内存:
ollama pull deepseek-r1:7b-q4_K_M
这样就能下载量化后的 7B 模型,内存占用减少 75% 哦!在 Ollama 上还能找到各种参数的 DeepSeek 大模型,任你挑选。
3. 启动 DeepSeek 模型
模型下载好了,咱们就可以启动它了。用以下命令:
ollama run deepseek-r1
启动后,你可以在终端输入提示词和模型互动。不过,这种黑窗口命令行的交互方式有点像回到微软 DOS 时代,不太方便。别急,接下来咱们就搞个图形化界面。
4. 通过 Open WebUI 与模型交互
4.1. 克隆 ollama-webui-lite
仓库
打开终端,输入以下命令克隆仓库并进入项目目录:
git clone https://github.com/ollama-webui/ollama-webui-lite.git
cd ollama-webui-lite
4.2. 安装依赖
在项目目录中,运行以下命令安装依赖:
npm ci
如果遇到网络问题导致安装失败,可以换成阿里云镜像:
npm config set registry https://registry.npm.taobao.org
npm ci
4.3. 启动 ollama-webui-lite
安装好依赖后,用以下命令启动服务:
npm run dev
默认情况下,ollama-webui-lite
会在本地的 3000
端口运行。打开浏览器,访问 http://localhost:3000
,就能进入 ollama-webui-lite
的界面啦。在设置中,把 Ollama 的 API 地址配置为 http://localhost:11434
。这个界面用起来就很顺手,和咱们平时用浏览器的习惯一样。如果你想从外网访问,还可以做内网穿透等服务哦。
5. 通过 API 调用模型
除了图形化界面,咱们还可以通过 API 调用模型。先启动 Ollama 的 API 服务:
ollama serve
默认情况下,API 服务运行在 http://localhost:11434
。
然后,可以用 curl
发送请求:
curl -X POST http://localhost:11434/api/generate -d '{
"model": "deepseek-r1",
"prompt": "Hello, introduce yourself",
"stream": false
}'
或者用 Python 脚本调用:
import requests
url = "http://localhost:11434/api/generate"
data = {
"model": "deepseek-r1",
"prompt": "Hello, introduce yourself",
"stream": False
}
response = requests.post(url, json=data)
print(response.json())
6. 性能优化
如果模型运行速度有点慢,别担心,这里有几个优化方法:
- 启用 Metal Performance Shaders:
OLLAMA_METAL=1 ollama run deepseek-r1
- 使用量化模型(如 4-bit 或 8-bit)。
- 减小上下文长度,比如
--ctx-size 2048
。
这样一来,模型的运行速度就能提升不少啦!
宝子们,按照以上步骤,你就能在 MacMini M4 丐版上轻松部署 DeepSeek 大模型,并实现图形化界面交互和 API 调用。是不是很简单?赶紧动手试试吧!如果在操作过程中遇到任何问题,欢迎在评论区留言,我们一起交流解决!