论文题目:Lifelong Learning for Sentiment Classification
论文地址:http://www.aclweb.org/anthology/P/P15/P15-2.pdf#page=778
论文大体内容:
作者把Lifelong Learning的思想用到文本观点的二分类中,达到不错的效果。
1、本文使用的是改进型贝叶斯优化框架,主要解决以下几个问题:
①从以前的dataset中能获取到什么信息?
②知识的形式是怎样的?
③怎么生成知识?
④怎么使用知识来帮助后面的dataset学习?
2、作者提出Lifelong Learning System主要包括4个模块:
①从过往dataset中提取的内容(如word-pairs);
②知识的存储;
③知识的挖掘;
④使用知识完成迁移学习;
3、本文contributions:对于观点分类问题,作者提出LSC(Lifelong Sentiment Classification)框架,并改进贝叶斯框架,以达到更好的分类效果。
4、贝叶斯概率如下:
5、优化方程如下:
6、求导后结果如下:
7、使用知识的时候,作者也考虑到使用term的文档频率来定义这个term的可靠度。
8、dataset:亚马逊商品评论20个产品,每个1000篇评论。
baseline:naive bayes,SVM,CLF[1]。
9、最后实验的效果相比baseline都不错,而且作者发现该LSC框架的分类效果随着以前的dataset的数据量增多而提升。所以lifelong的效果体现出来了。
参考资料:
[1]、http://dl.acm.org/citation.cfm?id=1557765
以上均为个人见解,因本人水平有限,如发现有所错漏,敬请指出,谢谢!