python自定义dataclass实现

dataclass是python3.7中自带的decorator,可以为customer class生成init function,同时支持以attribute形式获取class item。

For example:

@dataclass
class Point:
  x: float
  _: KW_ONLY
  y: float
  z: float

p = Point(0, y=1.5, z=2.0)

定义dataclass的约束有以下几点:1.所有field必须有annotation,本约束的原因将在后续内容说明 2. ‘non-default parameter follows default parameter’ rule,即有default的param必须在无default的之后。

同时,dataclass并不会依据annotation对field value类型做强约束,这一点与python function相同,即使声明字段为str,传入其他类型也不会报错。

首先通过分析dataclass实现原理,判断如何嵌入自定义内容。

原理很简单,dataclass为class生成了许多function,其中最主要的是 __init__,同时还包括__repr__, __eq__等,每个方法最后都通过_create_fn方法生成。在生成方法时需要得到field name,default,及locals等内容。

关于参数annotation和default的获取分为两步,首先通过`__annotations__`方法得到所有field的annotationdict,注意,此处获得的是有序的。而后,通过get class attribute方法得到所有field的default。使用这种方式要求每个field必须有annotation,原因为,假如class中存在一个field有default没有annotation,则__dict__能够拿到该值,__annotation__中没有该key,无法恢复class field原始的顺序,因而会对生成function造成

### Python 中 `@dataclass` 的使用说明及示例 #### 基本概念 `@dataclass` 装饰器是在 Python 3.7 版本中引入的一种工具,旨在简化数据类的创建过程。通过该装饰器,开发者能够快速定义仅用于存储数据的类,而无需手动编写诸如初始化函数 (`__init__`) 或字符串表示方法 (`__repr__`) 等常见功能[^4]。 以下是关于如何使用 `@dataclass` 的详细介绍: --- #### 定义简单的数据类 当使用 `@dataclass` 创建一个类时,默认会自动生成一些常用的方法,比如 `__init__`, `__repr__`, 和 `__eq__` 方法。这些方法使得对象更加易于操作和调试。 ```python from dataclasses import dataclass @dataclass class Point: x: int y: int ``` 上述代码片段定义了一个名为 `Point` 的数据类,其中包含两个属性:`x` 和 `y`。由于应用了 `@dataclass` 装饰器,因此不需要显式地定义 `__init__` 函数或其他特殊方法即可正常使用[^2]。 --- #### 扩展已有数据类 除了定义基础的数据类外,还可以通过对现有数据类进行继承来扩展其功能。例如,在下面的例子中展示了如何基于已有的 `Position` 类构建一个新的子类 `Capital` 并增加额外字段 `country`: ```python from dataclasses import dataclass @dataclass class Position: name: str lon: float lat: float @dataclass class Capital(Position): country: str ``` 这里我们看到的是一个典型的例子——通过继承机制让新类不仅保留父类特性还具备自己的独特之处[^1]。 --- #### 自定义行为 尽管默认情况下 `@dataclass` 提供了许多便利的功能,但在某些场景下可能仍需覆盖默认的行为。例如,如果希望改变实例打印形式或者重新定义相等性判断标准,则可以通过重写相应的方法实现特定需求。 ```python from dataclasses import dataclass @dataclass(order=True) class Product: name: str price: float def __post_init__(self): self.price = round(self.price, 2) p1 = Product('Laptop', 999.998) print(p1) # Output: Product(name='Laptop', price=999.99) ``` 在这个案例里,设置了参数 `order=True` 来启用自动生成比较运算符支持;另外也利用了特殊的钩子方法 `__post_init__` 对输入数据进行了进一步处理[^3]。 --- #### 总结 综上所述,`@dataclass` 不仅为开发人员提供了极大的便捷性,同时也保持了一定程度上的灵活性允许用户根据实际需要调整配置选项或添加个性化逻辑。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值