完全背包组合数 一维方法:
dp[j] = min(dp[j],dp[j-coins[i-1]]+1)
完全背包 2维方法:
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
n = len(coins)
dp = [[float("inf")]*(amount+1) for _ in range(n+1)]
dp[0][0] = 0
#for each object
for i in range(1,n+1):
#for each bag
for j in range(amount+1):
if coins[i-1]<=j:
dp[i][j] = min(dp[i-1][j],dp[i][j-coins[i-1]]+1)
else:#if adding coin[i-1],velocity exceeds
dp[i][j] = dp[i-1][j]
return dp[n][amount] if dp[n][amount]!=float("inf") else -1
完全背包排列数 一维方法:
背包问题 一维数组较容易但本题还有特殊性,因为是要求子串,最好是遍历背包放在外循环,将遍历物品放在内循环。 如果要是外层for循环遍历物品,内层for遍历背包,就需要把所有的子串都预先放在一个容器里。
完全背包排列数 二维方法(比较复杂):
int[][] dp = new int[target + 1][nums.length + 1];
for (int i = 0; i <= nums.length; i++) {
dp[0][i] = 1;
}
for (int i = 1; i <= target; i++) {
for (int j = 1; j <= nums.length; j++) {
if(i >= nums[j - 1]){
for (int k = 0; k < j; k++) {
dp[i][j] += dp[i - nums[k]][j];
}
}
else dp[i][j] = dp[i][j - 1];
}
}
return dp[target][nums.length];