DP 背包问题

 完全背包组合数 一维方法:

dp[j] = min(dp[j],dp[j-coins[i-1]]+1)

 完全背包 2维方法:

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        n = len(coins)
        dp = [[float("inf")]*(amount+1) for _ in range(n+1)]
        dp[0][0] = 0
        #for each object
        for i in range(1,n+1):
            #for each bag
            for j in range(amount+1):
                if coins[i-1]<=j:
                    dp[i][j] = min(dp[i-1][j],dp[i][j-coins[i-1]]+1)
                else:#if adding coin[i-1],velocity exceeds
                    dp[i][j] = dp[i-1][j]
        return dp[n][amount] if dp[n][amount]!=float("inf") else -1

完全背包排列数 一维方法:

背包问题 一维数组较容易但本题还有特殊性,因为是要求子串,最好是遍历背包放在外循环,将遍历物品放在内循环。 如果要是外层for循环遍历物品,内层for遍历背包,就需要把所有的子串都预先放在一个容器里。 

完全背包排列数 二维方法(比较复杂):

    int[][] dp = new int[target + 1][nums.length + 1];
    for (int i = 0; i <= nums.length; i++) {
        dp[0][i] = 1;
    }

    for (int i = 1; i <= target; i++) {
        for (int j = 1; j <= nums.length; j++) {
            if(i >= nums[j - 1]){
                for (int k = 0; k < j; k++) {
                    dp[i][j] += dp[i - nums[k]][j];
                }
            }
            else dp[i][j] = dp[i][j - 1];
        }
    }

    return dp[target][nums.length];

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值