决策树算法

1478 篇文章

已下架不支持订阅

本文深入探讨了两种决策树算法——C4.5和CART。C4.5算法是对ID3的改进,使用信息增益率进行属性选择,并能处理非离散数据。CART算法则采用基尼指数或最小方差来生成分类或回归树,计算更高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:C4.5算法

任务描述
本关任务:编写一个利用C4.5决策树进行分类的程序

相关知识
为了完成本关任务,你需要掌握:1.C4.5算法基本原理。2.信息增益率的计算。3.C4.5算法构建过程

C4.5算法
C4.5是机器学习算法中一个决策树算法,它是基于ID3算法进行改进后的一种重要算法,相对于ID3算法的改进:

1.用信息增益来选择属性。ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义,ID3使用的是熵,也就是熵的变化值,而C4.5用的是信息增益率
2.在构造决策树的过程中会进行剪枝,剔除掉一些不利于分类的子树
3.对非离散数据也可以处理,能够对不完整数据进行处理

from math import log
def calc_shannonent(dataset):
    """
    :param dataset: 需要计算信息熵的数据
    :

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值