【Pytorch学习】Basics

Q u i c k S t a r t QuickStart QuickStart

QuickStart合并代码

常用工具函数

dir()

打开工具箱子,输出里面的工具或者小工具箱子

help()

输入工具使用方法,不过可以自己去看文档

Working with data

PyTorch 有两个用于处理数据的基本工具:torch.utils.data.DataLoadertorch.utils.data.DatasetDataset 存储样本及其对应的标签,而 DataLoader 则在 Dataset 周围封装一个可迭代对象。

PyTorch 提供了特定领域的库,例如 TorchText、TorchVision 和 TorchAudio,它们都包含数据集。

Ep:

import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)

batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
    print(f"Shape of X [N, C, H, W]: {X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break
torch.utils.data.Dataset
简介
  • Stores the samples and their corresponding labels
  • All datasets that represent a map from keys to data samples should subclass it
用法
  1. Overwrite according to demand :

    • __init__ : Read data & preprocess 读资料与前处理

    • __getitem__ :Supporting fetching a data sample for a given key. 读取一笔一笔的资料的时候,看资料是什么东西

    • __len__ :Return the size of the dataset by many :class:~torch.utils.data.Sampler implementations and the default options of :class:~torch.utils.data.DataLoader.

    • __getitems__:Speed up batched samples loading. Accepts list of indices of samples of batch. Returns list of samples.

torch.utils.data.DataLoader

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

简介
  • wraps an iterable around the Dataset (group data in batches, enables multiprocessing)

Creating Models

​ 在 PyTorch 中定义一个神经网络,我们需要创建一个继承自 nn.Module 的类。我们在 __init__ 函数中定义网络的层,并在 forward 函数中指定数据如何通过网络传递。为了加速神经网络中的运算,我们将其移动到加速器上,例如 CUDA、MPS、MTIA 或 XPU。如果当前加速器可用,我们将使用它。否则,我们将使用 CPU。

Ep :

from torch import nn

device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")

# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork().to(device)
print(model)

Optimizing the Model Parameters

To train a model, we need a loss function and an optimizer.

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

在一个单一的训练循环中,模型对训练数据集(以批次形式输入)进行预测,并反向传播预测误差以调整模型的参数。

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

We also check the model’s performance against the test dataset to ensure it is learning.

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程会进行多次迭代(epoch)。在每个 epoch 期间,模型学习参数以做出更好的预测。我们在每个 epoch 打印模型的准确率和损失;我们希望看到准确率随着每个 epoch 的增加而增加,损失随着每个 epoch 的增加而减少。

epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)
print("Done!")

Saving Models

一种常见方法 : 序列化内部状态字典(包含模型参数)。

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

Loading Models

加载模型的过程包括:

  • 重新创建模型结构(架构)
  • 将状态字典(state_dict)加载到模型中。
model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth", weights_only=True))

This model can now be used to make predictions.

classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
    x = x.to(device)
    pred = model(x)
    predicted, actual = classes[pred[0].argmax(0)], classes[y]
    print(f'Predicted: "{predicted}", Actual: "{actual}"')

T e n s o r Tensor Tensor

​ Tensors are a specialized data structure that are very similar to arrays and matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model, as well as the model’s parameters.

​ 张量类似于 NumPy 的 ndarrays,不同之处在于张量可以在 GPU 或其他硬件加速器上运行。事实上,张量和 NumPy 数组通常可以共享相同的底层内存,无需复制数据 。

import torch
import numpy as np

​ 很多Tensor的方法与属性与ndarray相同

初始化

tensor对象的创建依托于torch的函数

数据直创

数据类型是自动推断的

data = [[1,2][3,4]]
x_data = torch.tensor(data)
Numpy数组

n d a r r a y ↔ t e n s o r ndarray \leftrightarrow tensor ndarraytensor

np_array = np.array(data)
x_np =torch.from_numpy(np_array)
从另一张量

新张量保留参数张量的属性(形状,数据类型),除非显式覆盖

x_ones = torch.ones_like(x_data)
print(x_ones)

x_rand = torch.rand_like(x_data,dtype=torch.float)# overrides the datatype of x_data
print(x_rand)
使用随机值或常量值
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)

print(rand_tensor)
print(ones_tensor)
print(zeros_tensor)

属性

  • shape

  • dtype

  • device

    ​ 存储Tensor的设备

操作

​ 超过 1200 种张量运算,包括算术、线性代数、矩阵作(转置、 indexing, slicing)、sampling 等, 资料库进行了全面描述。

​ 这些操作都可以在 CPU 和 Accelerator 上运行,例如 CUDA、MPS、MTIA 或 XPU。

移动到加速器进行运算

认情况下,张量是在 CPU 上创建的。

需要将张量显式移动到加速器(在检查加速器可用性之后)。

复制大型张量 跨设备在时间和内存方面可能很昂贵!

# We move our tensor to the current accelerator if available
if torch.accelerator.is_available():
    tensor = tensor.to(torch.accelerator.current_accelerator())

一些基础操作

索引与切片

基本与numpy相同

import torch

import numpy as np
# 创建三维数组
arr_3d = np.array([
    [[1, 2, 3], [4, 5, 6]],
    [[7, 8, 9], [10, 11, 12]]
])

# 选取每个二维子数组的第 1 行
print(arr_3d[:,0])  # 输出: [[1 2 3] [7 8 9]]

# 选取所有元素的最后一列
print(arr_3d[:,:, -1])  # 输出: [[3 6] [9 12]]
print(arr_3d[..., -1])  # 输出: [[3 6] [9 12]]
联接张量

用于沿给定维度连接一系列张量 , 另请参见 torch.stack

t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
算数运算
# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
# ``tensor.T`` returns the transpose of a tensor
y1 = tensor @ tensor.T # @ 是 Python 中用于矩阵乘法的运算符
y2 = tensor.matmul(tensor.T) # matmul 是 torch.Tensor 对象的矩阵乘法方法

y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3) # torch.matmul 是 PyTorch 提供的用于执行矩阵乘法的函数。out 参数用于指定存储结果的张量


# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)

z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
单元素Tensor

可以将其转换为 Python 数值使用

agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item)) # Out :12.0 <class 'float'>
就地操作

​ 在 PyTorch 中,方法名后面带有下划线 _ 的通常表示就地操作(in-place operation) ,会修改原始Tensor

print(f"{tensor} \n")
tensor.add_(5) #将每个元素加 5
print(tensor)

使用Numpy桥接

​ CPU 和 NumPy 数组上的张量可以共享其底层内存 locations 的 Locations

更改一个位置将更改另一个位置

T e n s o r → N u m p y Tensor \rightarrow Numpy TensorNumpy
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]

张量的变化反映在 NumPy 数组中。

t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
N u m p y → T e n s o r Numpy \rightarrow Tensor NumpyTensor
n = np.ones(5)
t = torch.from_numpy(n)

NumPy 数组中的更改反映在张量中。

np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值