Leetcode(128)——最长连续序列
题目
给定一个未排序的整数数组 numsnumsnums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n)O(n)O(n) 的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1]
输出:9
提示:
- 0 <= nums.length <= 105
- -109 <= nums[i] <= 109
题解
暴力枚举就不写了
方法一:哈希表
思路
我们考虑枚举数组中的每个数 xxx,考虑以其为起点,不断尝试匹配 x+1,x+2,⋯x+1, x+2, \cdotsx+1,x+2,⋯ 是否存在,假设最长匹配到了 x+yx+yx+y,那么以 xxx 为起点的最长连续序列即为 x,x+1,x+2,⋯ ,x+yx, x+1, x+2, \cdots, x+yx,x+1,x+2,⋯,x+y,其长度为 y+1y+1y+1,我们不断枚举并更新答案即可。对于匹配的过程,暴力的方法是 O(n)O(n)O(n) 遍历数组去看是否存在这个数,但其实更高效的方法是用一个哈希表存储数组中的数,这样查看一个数是否存在就能优化至 O(1)O(1)O(1) 的时间复杂度。
仅仅是这样我们的算法时间复杂度最坏情况下还是会达到 O(n2)O(n^2)O(n2)(即外层需要枚举 O(n)O(n)O(n) 个数,内层需要暴力匹配 O(n)O(n)O(n) 次),无法满足题目的要求。但仔细分析这个过程,我们会发现其中执行了很多不必要的枚举,如果已知有一个 x,x+1,x+2,⋯ ,x+yx, x+1, x+2, \cdots, x+yx,x+1,x+2,⋯,x+y 的连续序列,而我们却重新从 x+1x+1x+1,x+2x+2x+2 或者是 x+yx+yx+y 处开始尝试匹配,那么得到的结果肯定不会优于枚举 xxx 为起点的答案,因此我们在外层循环的时候碰到这种情况(不必要的枚举)跳过即可。
算法实现:
- 那么怎么判断是否跳过呢?由于我们要枚举的数 xxx 一定是在数组中不存在前驱数 x−1x-1x−1 的,不然按照上面的分析我们会从 x−1x-1x−1 开始尝试匹配,因此我们每次在哈希表中检查是否存在 x−1x-1x−1 (即是否存在该数的前驱数,即该数是否是连续序列的第一个数),就能判断是否需要跳过了。
- 增加了判断跳过的逻辑之后,时间复杂度是多少呢?外层循环需要 O(n)O(n)O(n) 的时间复杂度,只有当一个数是连续序列的第一个数的情况下才会进入内层循环,然后在内层循环中匹配连续序列中的数,因此数组中的每个数只会进入内层循环一次——即内层循环一共遍历了 nnn 个元素。根据上述分析可知,总时间复杂度为 O(n)O(n)O(n),符合题目要求。
- 注意第二次遍历时,我们选择遍历的是
unordered_set
而不是vector
。因为如果vector
有很多重复值,那么unordered_set
会更小,因为它只包含唯一值。在限制中,如果vector
包含相同数量的一百万个副本,则这段循环vector
将运行一百万次迭代,而循环set
将仅运行一次。
代码实现
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
int max = 0, tmpmax = 0, next = 0;
unordered_set<int> nums_set;
for(auto& value: nums)
nums_set.emplace(value);// 插入新值
// 某些情况下遍历 nums 的时间会比遍历 nums_set 的时间多很多
// 而且 unordered_set 会过滤掉 vector 的重复元素,题目不需要这些重复元素
for(auto& value: nums_set){
if(nums_set.count(value-1) == 0){ // 判断是不是第一个数字
next = value+1;
tmpmax = 1; // 重置
while(nums_set.count(next) != 0){
tmpmax++;
next++;
}
if(max < tmpmax)
max = tmpmax;
}
}
return max;
}
};
复杂度分析
时间复杂度:O(N)O(N)O(N) ,其中 NNN 是数组 numsnumsnums 的长度。遍历了一遍数组 numsnumsnums ,再遍历了一遍 numsnumsnums 中不重复的元素。
空间复杂度:O(N)O(N)O(N) ,其中 NNN 是数组 numsnumsnums 的长度。创建了一个哈希表来存储数组 numsnumsnums 不重复的元素。
方法二:红黑树
思路
和哈希表差不多,不过这次是通过 set
(即红黑树)。在第一遍遍历数组 numsnumsnums 时将值插入 set
中并进行排序,然后在第二次遍历 set
时当某一段序列结束(即当前值不等于上一个值+1)时,将当前序列的长度与存储当前最长序列长度的变量 maxmaxmax 进行比较,大于则赋值给 maxmaxmax。并在循环外加一个判断,以避免出现最后一段序列是最长序列,但是因为循环终止了不能赋值给 maxmaxmax。
代码实现
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
int max = 0;
set<int> xvlie;
for(auto& u: nums){
xvlie.emplace(u);
}
int tmpmax = 0;
int prev;
for(auto n = xvlie.begin(); n != xvlie.end(); n++){
if(n == xvlie.begin() || *n == prev+1)
tmpmax++;
else{
if(max < tmpmax)
max = tmpmax;
tmpmax = 1;
}
prev = *n;
}
if(max < tmpmax)
max = tmpmax;
return max;
}
};
复杂度分析
时间复杂度:O(NlogN)O(N \log N)O(NlogN) ,其中 NNN 是数组 numsnumsnums 的长度。因为红黑树的插入和遍历的时间复杂度都是 O(logN)O(\log N)O(logN)。而第一个序列遍历了数组 numsnumsnums,第二次遍历了红黑树。
空间复杂度:O(N)O(N)O(N) ,其中 NNN 是数组 numsnumsnums 的长度。创建了一个红黑树来存储数组 numsnumsnums 不重复的元素。