Leetcode(347)——前 K 个高频元素

本文介绍了解决LeetCode 347题“前K个高频元素”的三种方法:桶排序、堆排序和快速选择排序。每种方法都详细讲解了其思路和代码实现,并对时间及空间复杂度进行了分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode(347)——前 K 个高频元素

题目

题解

方法一:桶排序

思路

​​  顾名思义,桶排序的意思是为每个值设立一个桶,桶内记录这个值出现的次数(或其它属性),然后对桶进行排序。针对样例来说,我们先通过桶排序得到三个桶 [1,2,3,4],它们的值分别为 [4,2,1,1],表示每个数字出现的次数。
​​  紧接着,我们对桶的频次进行排序,前 k 大个桶即是前 k 个频繁的数。这里我们可以使用各种排序算法,甚至可以再进行一次桶排序,把每个旧桶根据频次放在不同的新桶内。针对样例来说,因为目前最大的频次是 4,我们建立 [1,2,3,4] 四个新桶,它们分别放入的旧桶为 [[3,4],[2],[],[1]],表示不同数字出现的频率。最后,我们从后往前遍历,直到找到 k 个旧桶。

代码实现

我的:

class Solution {
public:
    vector<int> topKFrequent(vector<int>& nums, int k) {
        if(nums.size() == 1) return nums;
        unordered_map<int, int> times;
        int maxcount = 0;
        for(auto& it: nums) maxcount = max(maxcount, ++times[it]);
        
        vector<vector<int>> bucket(maxcount+1);
        for(auto& it: times) bucket[it.second].push_back(it.first);
        
        vector<int> ans;
        // 因为保证答案唯一,所以不考虑 maxcount 的大小
        while(k > 0){
            if(!bucket[maxcount].empty()){
                k -= bucket[maxcount].size();
                ans.insert(ans.end(), bucket[maxcount].begin(), bucket[maxcount].end());
            }
            maxcount--;
        }
        return ans;
    }
};
复杂度分析

时间复杂度O(n)O(n)O(n),其中 nnn 是数组长度
空间复杂度O(max(n,k))O(max(n, k))O(max(n,k)),其中 nnn 是数组长度

方法二:堆排序

思路

​​  首先遍历整个数组,并使用哈希表记录每个数字出现的次数,并形成一个「出现次数数组」。找出原数组的前 kkk 个高频元素,就相当于找出「出现次数数组」的前 kkk 大的值。

​​  最简单的做法是给「出现次数数组」排序。但由于可能有 O(N)O(N)O(N) 个不同的出现次数(其中 NNN 为原数组长度),故总的算法复杂度会达到 O(Nlog⁡N)O(N\log N)O(NlogN),不满足题目的要求。

在这里,我们可以利用堆的思想:建立一个小顶堆,然后遍历「出现次数数组」:

  • 如果堆的元素个数小于 kkk,就可以直接插入堆中。
  • 如果堆的元素个数等于 kkk,则检查堆顶与当前出现次数的大小。如果堆顶更大,说明至少有 kkk 个数字的出现次数比当前值大,故舍弃当前值;否则,就弹出堆顶,并将当前值插入堆中。

​​  遍历完成后,堆中的元素就代表了「出现次数数组」中前 kkk 大的值。

代码实现

Leetcode 官方题解:

class Solution {
public:
    static bool cmp(pair<int, int>& m, pair<int, int>& n) {
        return m.second > n.second;
    }

    vector<int> topKFrequent(vector<int>& nums, int k) {
        unordered_map<int, int> occurrences;
        for (auto& v : nums) {
            occurrences[v]++;
        }

        // pair 的第一个元素代表数组的值,第二个元素代表了该值出现的次数
        priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(&cmp)> q(cmp);
        for (auto& [num, count] : occurrences) {
            if (q.size() == k) {
                if (q.top().second < count) {
                    q.pop();
                    q.emplace(num, count);
                }
            } else {
                q.emplace(num, count);
            }
        }
        vector<int> ret;
        while (!q.empty()) {
            ret.emplace_back(q.top().first);
            q.pop();
        }
        return ret;
    }
};
复杂度分析

时间复杂度O(Nlog⁡k)O(N\log k)O(Nlogk),其中 NNN 为数组的长度。我们首先遍历原数组,并使用哈希表记录出现次数,每个元素需要 O(1)O(1)O(1) 的时间,共需 O(N)O(N)O(N) 的时间。随后,我们遍历「出现次数数组」,由于堆的大小至多为 kkk,因此每次堆操作需要 O(log⁡k)O(\log k)O(logk) 的时间,共需 O(Nlog⁡k)O(N\log k)O(Nlogk) 的时间。二者之和为 O(Nlog⁡k)O(N\log k)O(Nlogk)
空间复杂度O(N)O(N)O(N)。哈希表的大小为 O(N)O(N)O(N),而堆的大小为 O(k)O(k)O(k),共计为 O(N)O(N)O(N)

方法三:(改进的)快速排序——即快速选择排序

思路

​​  我们可以使用快速选择算法,求出「出现次数数组」的前 kkk 大的值。

​​  首先我们使用 arr\textit{arr}arr 数组存储每个数字对应的出现次数,然后遍历数组获取出现次数。然后对 arr\textit{arr}arr 数组进行快速排序。

​​  在对数组 arr[l…r]\textit{arr}[l \ldots r]arr[lr] 做快速排序的过程中,我们首先将数组划分为两个部分 arr[i…q−1]\textit{arr}[i \ldots q-1]arr[iq1]arr[q+1…j]\textit{arr}[q+1 \ldots j]arr[q+1j],并使得 arr[i…q−1]\textit{arr}[i \ldots q-1]arr[iq1] 中的每一个值都不超过 arr[q]\textit{arr}[q]arr[q],且 arr[q+1…j]\textit{arr}[q+1 \ldots j]arr[q+1j] 中的每一个值都大于 arr[q]\textit{arr}[q]arr[q]

于是,我们根据 kkk 与左侧子数组 arr[i…q−1]\textit{arr}[i \ldots q-1]arr[iq1] 的长度(为 q−iqq-iqqiq)的大小关系:

  • 如果 k≤q−ik \le q-ikqi,则数组 arr[l…r]\textit{arr}[l \ldots r]arr[lr]kkk 大的值,就等于子数组 arr[i…q−1]\textit{arr}[i \ldots q-1]arr[iq1]kkk 大的值。
  • 否则,数组 arr[l…r]\textit{arr}[l \ldots r]arr[lr]kkk 大的值,就等于左侧子数组全部元素,加上右侧子数组 arr[q+1…j]\textit{arr}[q+1 \ldots j]arr[q+1j] 中前 k−(q−i)k - (q - i)k(qi) 大的值。

​​  原版的快速排序算法的平均时间复杂度为 O(Nlog⁡N)O(N\log N)O(NlogN)。我们的算法中,每次只需在其中的一个分支递归即可,因此算法的平均时间复杂度降为 O(N)O(N)O(N)

代码实现

Leetcode 官方题解:

class Solution {
public:
    void qsort(vector<pair<int, int>>& v, int start, int end, vector<int>& ret, int k) {
        int picked = rand() % (end - start + 1) + start;
        swap(v[picked], v[start]);

        int pivot = v[start].second;
        int index = start;
        for (int i = start + 1; i <= end; i++) {
            if (v[i].second >= pivot) {
                swap(v[index + 1], v[i]);
                index++;
            }
        }
        swap(v[start], v[index]);

        if (k <= index - start) {
            qsort(v, start, index - 1, ret, k);
        } else {
            for (int i = start; i <= index; i++) {
                ret.push_back(v[i].first);
            }
            if (k > index - start + 1) {
                qsort(v, index + 1, end, ret, k - (index - start + 1));
            }
        }
    }

    vector<int> topKFrequent(vector<int>& nums, int k) {
        unordered_map<int, int> occurrences;
        for (auto& v: nums) {
            occurrences[v]++;
        }

        vector<pair<int, int>> values;
        for (auto& kv: occurrences) {
            values.push_back(kv);
        }
        vector<int> ret;
        qsort(values, 0, values.size() - 1, ret, k);
        return ret;
    }
};
复杂度分析

时间复杂度
​​  其中 NNN 为数组的长度。设处理长度为 NNN 的数组的时间复杂度为 f(N)f(N)f(N)。由于处理的过程包括一次遍历和一次子分支的递归,最好情况下,有 f(N)=O(N)+f(N/2)f(N) = O(N) + f(N/2)f(N)=O(N)+f(N/2),根据主定理,能够得到 f(N)=O(N)f(N) = O(N)f(N)=O(N)
​​  最坏情况下,每次取的枢轴都位于数组的两端,时间复杂度退化为 O(N2)O(N^2)O(N2)。但由于我们在每次递归的开始会先随机选取中枢元素,故出现最坏情况的概率很低。
​​  平均情况下,时间复杂度为 O(N)O(N)O(N)

空间复杂度O(N)O(N)O(N)。其中哈希表的大小为 O(N)O(N)O(N),用于排序的辅助数组的大小也为 O(N)O(N)O(N),快速排序的空间复杂度最好情况为 O(log⁡N)O(\log N)O(logN),最坏情况为 O(N)O(N)O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值