预处理+DFS【洛谷P1019】

本文详细解析洛谷P1019题目的解题思路,通过预处理字符串间的最小重叠长度,使用DFS深度优先搜索算法寻找最长字符串链,附带完整代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

照例先上题目链接:https://www.luogu.org/problemnew/show/P1019

一拿到题是懵的,读了好几遍题目才确定题意,想了半天都在想怎么样才能模拟把字符串输出出来。果然对于这种含有模拟的题目我还是很不拿手。

由于对这个题目毫无思路,在队友@TDD的启(讲)发(解)下,我才勉强对这个题目有了新的认识。

这题根本就不需要把字符输出出来啊!


下面是思路:

首先题目要求,求出最长的字符串,那么我们就需要找到每两个单词之间最短的重合长度(最小重叠部分),

举个例子,abcd和dddddd,他们合并之后是abcddddddd,他们的最小重叠长度是1(我也不知道对不对,如果不对的话请给我留言,谢谢大家啦)

题目还给出了一个首字符,那么我们就直接根据首字符进行暴力DFS,如果可以接龙,那么就直接把合并上的长度加上去,直到所有的字符都不能合并为止。每一次DFS都要对于长度求一个max。

这就是大体思路,但是我们注意到,DFS里面需要找很多次单词的接龙单词,这咋找啊!我哪知道这个单词后面能接哪一个单词啊!所以我们就需要对所有的字符串进行【预处理】,func(i,j)表示第i个字符串后面接第j个字符串的最小重叠长度。这样预处理完了之后,就可以愉快的DFS辽。

 

下面上代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 30;
int num[maxn][maxn];
int used[maxn];
int ans = 0;
int tmp = 0;
int n;
void init()
{
	memset(num,0,sizeof(num));
	memset(used,0,sizeof(used));
}
string str[maxn];
int func(int a,int b)
{
	for(int i=str[a].size()-1;i>=0;i--)
	{
		int pb = 0;
		int j;
		for(j=i;j<str[a].size();j++)
		{
			if(str[a][j]==str[b][pb] && pb<str[b].size())
			{
				pb++;
			}
			else
			{
				break;
			}
		}
		if(j>=str[a].size())
		{
			return str[a].size()-i;
		}
	}
	return -1;
}
void dfs(int s)
{
	bool found = false;
	for(int i=0;i<n;i++)
	{
		if(used[i]<2 && num[s][i]!=-1 && num[s][i]!=str[i].size() && num[s][i]!=str[s].size())
		{
			found = true;
			tmp += str[i].size()-num[s][i];
			used[i]++;
			dfs(i);
			tmp -= str[i].size()-num[s][i];
			used[i]--;
		}
	}
	if(!found)
	{
		ans = max(ans,tmp);
	}
}
int main()
{
	while(cin>>n)
	{
		for(int i=0;i<n;i++)
		{
			cin>>str[i];
		}
		cin>>str[n];
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			{
				num[i][j] = func(i,j);
			}
		}
		for(int i=0;i<n;i++)
		{
			if(str[i][0]==str[n][0])
			{
				used[i]++;
				tmp = str[i].size();
				dfs(i);
				used[i]--;
			}
		}
		cout<<ans<<endl;
	}
	return 0;
} 

总结:感觉这个题目不仅思路很混乱,而且代码实现也比较复杂。果然还是自己太蒻了!

### 题目描述 洛谷 P7909 题目名为“分糖果”,题目描述如下: 小明正在分糖果。糖果被分装在若干个袋子里,每个袋子里有若干颗糖果。小明想把这些糖果分给他的 $n$ 个朋友,每个朋友分得的糖果数量必须相等,而且所有的糖果都必须被分配完。 题目要求计算出有多少种不同的分配方式。分配方式的规则是:每个朋友分得的糖果总数必须相同,并且每个袋子中的糖果只能被分配给一个朋友。 输入格式为第一行一个整数 $n$,表示朋友的数量;第二行一个整数 $m$,表示袋子的数量;第三行包含 $m$ 个整数,表示每个袋子中的糖果数量。 输出格式为输出一个整数,表示符合条件的分配方式总数。 ### 解题思路 首先,需要计算所有袋子中的糖果总数 $sum$。如果 $sum$ 不能被 $n$ 整除,则无法平均分配,直接输出 0。否则,每个朋友应分得的糖果数量为 $target = sum / n$。 接下来,问题转化为从所有袋子中选出若干个袋子,使得它们的糖果总数等于 $target$,并重复这一过程,直到所有袋子都被分配完毕。这可以通过深度优先搜索(DFS)或动态规划(DP)来解决。 使用 DFS 的解法中,可以通过递归的方式尝试将袋子分配给每一个朋友,同时记录符合条件的分配方式数量。递归过程中需要确保每个袋子只能被分配一次,并且每个朋友分得的糖果总数不超过 $target$。 ### 示例代码 以下是一个基于深度优先搜索的解法示例: ```cpp #include <bits/stdc++.h> using namespace std; int n, m; int candies[20]; bool visited[20]; int target; int count_ways = 0; // 深度优先搜索函数 void dfs(int index, int current_sum, int groups) { if (groups == n) { count_ways++; return; } for (int i = index; i < m; ++i) { if (!visited[i]) { visited[i] = true; if (current_sum + candies[i] == target) { dfs(i + 1, 0, groups + 1); } else if (current_sum + candies[i] < target) { dfs(i + 1, current_sum + candies[i], groups); } visited[i] = false; } } } int main() { cin >> n >> m; int sum = 0; for (int i = 0; i < m; ++i) { cin >> candies[i]; sum += candies[i]; } if (sum % n != 0) { cout << 0 << endl; return 0; } target = sum / n; dfs(0, 0, 0); cout << count_ways << endl; return 0; } ``` ### 解题关键点 1. **预处理**:首先判断糖果总数能否被朋友数量 $n$ 整除,如果不能,则直接输出 0。 2. **深度优先搜索**:通过递归尝试所有可能的分配组合,确保每个朋友分得的糖果总数为 $target$。 3. **剪枝优化**:在递归过程中,如果当前分组的糖果总数超过 $target$,则停止该分支的搜索。 4. **避免重复计算**:通过标记已分配的袋子,避免重复分配[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值